
DTD Attribute 1

DTD Attributes

Elements can have zero or more attributes, which are declared using the !ATTLIST tag. Unlike
element definitions, attribute definitions do not impose order on when the attributes occur.
Furthermore, if several attributes are declared for the same element type, they can be declared using
multiple !ATTLIST tags.
In the DTD, XML element attributes are declared with an ATTLIST declaration.

Syntax :
<!ATTLIST element-name attribute-name attribute-type default-value>

DTD Example :
<!ATTLIST payment type CDATA "check">
XML Example :
<payment type="check" />

Each attribute in a declaration has three parts: a name, a type, and a default value.

ATTRIBUTE DEFAULT VALUES

Attribute default values can be value, optional (#IMPLIED), required (#REQUIRED), or fixed (#FIXED).

Default attribute value
Syntax:
<!ATTLIST element-name attribute-name CDATA "default-value">
DTD example:
<!ATTLIST payment type CDATA "check">
XML example:
<payment type="check">

Specifying a default value for an attribute, assures that the attribute will get a value even if the author of
the XML document didn't include it.
Implied attribute
Syntax:
<!ATTLIST element-name attribute-name attribute-type #IMPLIED>
DTD example:
<!ATTLIST contact fax CDATA #IMPLIED>
XML example:
<contact fax="555-667788">

Use an implied attribute if you don't want to force the author to include an attribute and you don't have
an option for a default value either.
Required attribute

Anil C. B. Sree Narayana Gurukulam College of Engineering, Kaddayiruppu

Default Value Description

value The default value of the attribute

#REQUIRED The attribute value must be included in the element

#IMPLIED The attribute does not have to be included

#FIXED value The attribute value is fixed

DTD Attribute 2

Syntax:
<!ATTLIST element-name attribute_name attribute-type #REQUIRED>
DTD example:
<!ATTLIST person number CDATA #REQUIRED>
XML example:
<person number="5677">

Use a required attribute if you don't have an option for a default value, but still want to force the attribute
to be present.
Fixed attribute value
Syntax:
<!ATTLIST element-name attribute-name attribute-type #FIXED "value">
DTD example:
<!ATTLIST sender company CDATA #FIXED "Microsoft">
XML example:
<sender company="Microsoft">

Use a fixed attribute value when you want an attribute to have a fixed value without allowing the author
to change it. If an author includes another value, the XML parser will return an error. An attribute declaration
may specify that an attribute has a fixed value. In this case, the attribute is not required, but if it occurs, it must
have the specified value. If it is not present, it will appear to be the specified default. One use for fixed attributes
is to associate semantics with an element.

Example of a DTD
<!ELEMENT book EMPTY>
<!ATTLIST book
title CDATA #REQUIRED
author CDATA 'anonymous'
weight CDATA #IMPLIED
format (paper-back | hard-back) 'paper-
back'
>

Example 1 of XML using this DTD
<?xml version="1.0" standalone="no"?>
<!DOCTYPE book SYSTEM "book.dtd">
<book
title="False Pretences"
author="Margaret Yorke"
format="hard-back"
/>

ATTRIBUTE TYPE
Attributes can have these types:

CDATA, Enumerated attribute value, ID, IDREF, IDREFS, NMTOKEN, NMTOKENS, ENTITY, ENTITIES,
NOTATION

CDATA
CDATA attributes are strings, any text is allowed. Don't confuse CDATA attributes with CDATA
sections.
Enumerated attribute values
Syntax:
<!ATTLIST element-name attribute-name (eval|eval|..)>
DTD example:
<!ATTLIST payment type (check|cash)>
XML example:
<payment type="check">
or
<payment type="cash">
Use enumerated attribute values when you want the attribute values to be one of a fixed set of legal
values.

Anil C. B. Sree Narayana Gurukulam College of Engineering, Kaddayiruppu

DTD Attribute 3

ID
The value of an ID attribute must be a name. All of the ID values used in a document must

be different. IDs uniquely identify individual elements in a document. Elements can have only a single
ID attribute.

IDREF
The IDREF type allows the value of one attribute to be an element elsewhere in the

document provided that the value of the IDREF is the ID value of the referenced element. A validating
parser verifies that no two elements have the same ID value. Thus the attribute can be used as a key of
the element. Other elements can then have IDREF attributes (defined in a DTD) that “reference” an
element by its ID attribute. Note that a validating parser makes sure that all IDREF attributes refer to an
existing ID attribute in the XML document.
XML example:
<author ref="myorke">Margaret Yorke</author>
...
<book author="myorke">False Pretences</book>
is based on the DTD:
<!ELEMENT author (#PCDATA)>
<!ATTLIST author ref ID #REQUIRED>
<!ELEMENT book (#PCDATA)>

<!ATTLIST book author IDREF #IMPLIED>
The disadvantages are that the ID values are not restricted to an element . That is, an ID attribute has

to be unique in an XML document regardless of the element in which it is defined. This is troublesome
because if an XML document includes a student element and a course element, both with their own ID
attribute, then the id (or key) of a student cannot be the same of the id of a course. This issue has to be
considered when designing the DTD and the understanding of the id in elements that contain it.

Another disadvantage is that the semantics of an ID/IDREF cannot be formally specified. For
example, a student element with an IDREF attribute that is intended to be a relationship to a course id
cannot be specified in the DTD rules. A validating parser only validates that an IDREF has a value for
an id that exists within the document, it cannot validate that such value has to exist “in a specific
element”. That is, the following basic rule cannot be specified in the DTD: the value for the attribute
“takes” of a student element refers to an id of an existing course element.
IDREFS
The value is a list of other ids. An IDREF attribute's value must be the value of a single ID attribute on
some element in the document. The value of an IDREFS attribute may contain multiple IDREF values
separated by white space.

ENTITY or ENTITYS
An ENTITY attribute's value must be the name of a single entity . The value of an

ENTITIES attribute may contain multiple entity names separated by white space.
Values of type ENTITY must match the Name production, values of type ENTITIES must match Names; each
Name must match the name of an unparsed entity declared in the DTD.
<!ATTLIST MYPHOTO FILENAME ENTITY #REQUIRED>
<!ENTITY employeephoto "images_employees” >
<!ELEMENT employee (name, sex, title, years) >
<!ATTLIST employee pic ENTITY #IMPLIED >

Anil C. B. Sree Narayana Gurukulam College of Engineering, Kaddayiruppu

DTD Attribute 4

...
<employee pic="employeephoto">

NMTOKEN or NMTOKENS
“NMTOKEN” implying that the value must conform to XML identifier name

specifications. Name token attributes are a restricted form of string attribute. In general, an
NMTOKEN attribute must consist of a single word. But there are no additional constraints on the
word; it doesn't have to match another attribute or declaration. The value of an NMTOKENS attribute
may contain multiple NMTOKEN values separated by white space.

The characters of an NMTOKEN value must be a letter, digit, '.', '-', '_', or ':'. It may not include
white space.
 <!ELEMENT student_name (#PCDATA)>
 <!ATTLIST student_name student_no NMTOKEN #REQUIRED>
 example:
 <student_name student_no="9216735">Jo Smith</student_name>

 <!ATTLIST stud s_no NMTOKENS #REQUIRED>
example:

 <stud stu_no="9216735 err">Jo Smith</stud>

Notation Type
specifies that the names must match a particular notation name. Notation declarations

identify specific types of external binary data. This information is passed to the processing application,
which may make whatever use of it it wishes. A typical notation declaration is:
<!NOTATION> tag is used to define a notation in DTD. Here GIF87A mp and st are notation.
<! NOTATION GIF87A SYSTEM "GIF">
<!NOTATION mp SYSTEM "mplay32.exe">
<!NOTATION st SYSTEM "soundtool">

<!ATTLIST sound player NOTATION #REQUIRED>
Example:
<sound player=”mp”>
Attribute player of sound tag can store only the names of defined notation.

Figure 2. A short bibliography in XML. This example demonstrates the use of attributes as well as
referencing using the id and idref attributes.
<?xml version=“1.0” standalone=“yes”>
<!– This is an example bibliography. –>
<BIB>
<BOOK nickname=“Dragon book”>
<AUTHOR id=“aho”> Aho, A. V. </AUTHOR>
<AUTHOR id=“sethi”> Sethi, R. </AUTHOR>
<AUTHOR id=“ullman”> Ullman, J. D. </AUTHOR>
<TITLE> Compilers: Principles, Techniques, and Tools </TITLE>
<PUBLISHER> Addison-Wesley </PUBLISHER>
<YEAR> 1985 </YEAR>
</BOOK>
<BOOK>
<AUTHOR idref =“ullman”/>

Anil C. B. Sree Narayana Gurukulam College of Engineering, Kaddayiruppu

DTD Attribute 5

<TITLE> Principles of Database and Knowledge-Base Systems, Vol.1 </TITLE>
</BOOK>
...
</BIB>

Figure 3. A DTD for the bibliography example. The DTD defines a grammar for documents.

<!DOCTYPE bib [
<!ELEMENT BIB (BOOK+)>
<!ELEMENT BOOK (AUTHOR+, TITLE, PUBLISHER?, YEAR?)>
<!ATTLIST BOOK isbn CDATA #IMPLIED nickname CDATA #IMPLIED>
<!ELEMENT AUTHOR (#PCDATA)>
<!ATTLIST AUTHOR id ID #IMPLIED idref IDREF #IMPLIED>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT PUBLISHER (#PCDATA)>
<!ELEMENT YEAR (#PCDATA)>
]>

Weaknesses of the DTD:

• DTD has a limited capability for specifying data types
• DTD requires its own language, Not in XML syntax
• DTD provides incompatible set of data types with those found in databases. e.g. “PCDATA,”

“CDATA”
• Example: DTD do not allow to specify element day and month of Type Integer and within a

certain Range: <day>32</day><month>13</month>
• Do not support XML namespace
• Not expressed in XML syntax - can’t process them using XML tools (such as parsers)

XML Schemas Overcome most Limitations of DTD
• Richer capabilities than a DTD

o Describes the possible arrangement of tags and text in a valid document
o 44+ datatypes (as opposed to 10 in DTDs)
o Allows attribute grouping
o Supports use of namespaces
o Supports object-oriented design

 “Custom” data types can be derived from other data types and inherit their
attributes *

o Can specify element constraints and valid values
XML Schema “Limitations”

• Not all developers and standards bodies use Schema the same way
o There are at least 20 ways to declare attributes

 From local attribute with default value to global attribute with fixed value
o At least 15 ways to declare elements

 From local element with default value to global element with complex type

Anil C. B. Sree Narayana Gurukulam College of Engineering, Kaddayiruppu

	DTD Attributes
	ATTRIBUTE Default values
	Example 1 of XML using this DTD
	Attribute type
	XML Schemas Overcome most Limitations of DTD
	XML Schema “Limitations”

