
Microsoft Foundation Class Library
The Microsoft Foundation Class Library (also Microsoft Foundation Classes or MFC) is a

library that wraps portions of the Windows API in C++ classes, including functionality that enables
them to use a default application framework. Classes are defined for many of the handle-managed
Windows objects and also for predefined windows and common controls.

MFC was introduced in 1992 with Microsoft's C/C++ 7.0 compiler for use with 16-bit versions
of Windows as an extremely thin OOP/C++ wrapper for the Windows API. One interesting quirk of
MFC is the use of "Afx" as the prefix for many functions, macros and the standard pre-compiled
header name "stdafx.h".

MFC encapsulate key window data structure. Many MFC classes have member functions with
names that are identical to those of native API functions. The MFC library encapsulates all normal
procedure- oriented windows functions and provides support for control bars, property sheet , ActiveX
control and database support etc. Thus MFC makes windows application development easier.

MFC library is a collection of C++ classes. It provides as a Dynamic Linking Library (DLL) so
your application has access to the classes in MFC. A DLL contains a executable function that are
loaded into memory and are independent from any application libraries such as MFC are called
Application framework, because they give the user a framework for an application. The MFC classes
have been built using the OS's API function .Using MFC classes means that much of the programming
has already done for you and you need to add only special features to the MFC code to create your
application. To use MFC framework your application mist be written in C++.

 MFC is designed to work with all available windows OS like Windows95, 98, NT etc. MFC
applications can be built and run an any these OS's.

MFC and Windows OS Interaction.

Windows OS has 3 major components – USER , GDI and KERNEL.
USER - USER is a module of code that services input devices such as keyboard, mouse etc.. .
Kernel – Kernel is a module that services file management and internal memory management.
GDI – This GDI serves output to graphical devices such as screen, printers etc.

Collectively these three components are called API. These components interact with the MFC
application. MFC application calls functions in the API. Each of the t3 API components are provided
as DLL. An application can call functions in the DLL as though they were part of the application. The
API DLL,s are normally found in windows OS directory.

C:\WINDOWS\SYSTEM
Files are user.exe, gdi.exe and kernal386.exe ---- in Win16

 user.dll, gdui.dll and kernal32.dll ---- in Win32
MFC Application Framework
 MFC is a library of built in classes that can be used or derived for various functionalities of
your application. MFC contains some relationship with Win32. Using MFC library classes windows
programming can be done without Win32 API. There is no explicit WinMain() function in the MFC
application framework structure, but there is an underlining WinMain will be called by the classes of
MFC library

Application Framework is a different programming structure. An application framework is a
software framework that is used to implement the standard structure of an application for a specific
operating system. Application frameworks became popular with the rise of the graphical user interface
(GUI), since these tended to promote a standard structure for applications. It is also much simpler to
create automatic GUI creation tools when a standard framework is used, since the underlying code
structure of the application is known in advance. Object-oriented programming techniques are usually
used to implement frameworks such that the unique parts of an application can simply inherit from pre-
existing classes in the framework.

MFC applications (Advantages)

● It is a C++ interface to windows API
● It contains several general purpose (non- window specific) classes like

● collection of classes for list, array
● String class
● Time,Time spand, Date classes
● File access class

● Multiple Document Interface (MDI) application support
● Support menu items
● It support scrolling window
● support tool bar(back, go, next) and status bar.
● Automatic processing of a data entered in a dialog box
● ODBC connectivity
● WinSock and WinIner classes for TCP/IP communication
● Support classes for thread synchronization.

MFC and its type of classes

The classes in the MFC library is mainly classified into 4 categories.
1. General classes

These classes provide things like string -handling classes and collection classes
2. Window API classes

These classes provides a wrapper over the windows OS
3. Application Framework classes

These classes handle large pices of the whole application such as message-pumping
logic, printing as well as MFC's document/view architecture.

4. High- level abstraction
It is for abstracting several OS extensions, including OLE, MAPI and WinSock.

Class structure Diagram [MFC Class Hierarchy]

Cobject class – The mother of all classes
MFC's root class is called Cobject class. It define and implements functionalities that most MFC

classes need in order to work with other parts of the framework. CObject serves the root not only for
library classes such as Cfiles or an CobList, but also for the classes that you write. when you are using
this MFC classes, you should usually make sure that you have Cobject some ware in your class
hierarchy. When you derive your class from Cobject, your class automatically gain the ability to add
the following 4 basic services.

● Serialization support
● Run-time class information
● Object diagnostic output
● Compatibility with collection classes

Basic Services for CObject
1.Run-time class information (RTCI)

CObject Run-time class information (RTCI) feature lets lets the developer determine
information about an object such as class name and parent at runtime. MFC maintain these information
by the help of the CRuntime class. Application rarely use the Cruntime class directely, but it depents on
macrossuch as DECLARE_DYNAMIC (to be embedded in the definition of class) and
IMPLEMENT_ DYNAMIC (to be added to the implementation file). These macros add the runtime
information to the class and enable the use of IsKindOf member function.

IsKindOf is used to test the objects relationship to a given class.
 2. Dynamic Creation [Compatibility with collection classes]

To add Dynamic Creation support to your CObject derivative, then you must use the
DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macro instead of
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros. Once you add this you can create
objects based on there CRuntime class information through the use of create object member function.
3.Persistence [Serialization]
 Persistence is the ability to store object and restore their stages some times later. Using
persistence it is very easy to reading and writing without having to worry about the format of the file
you are writing to. To support serialization in you must use the DECLARE_SERIAL and
IMPLEMENT _SERIAL macro instead of DECLARE _DYNAMIC and IMPMENT_DYNAMIC.
4. Run Time Object Diagnostics [Object diagnostic output]

All CObject derived MFC classes have 2 member functions
1. Dump member function

The Dump member function is that you can call to print out a C++'s object state at run time.
The Dump routine makes you of the CDumpContext helper class to output the debugging information.

2. Assert Valid member function
The Assert Valid member function in which the object checks its member validity at run time.

Any other object can call Assert Valid member function to verify that the object is in a safe state.
Both of these member function are use in the debug builder to provide advanced debugging

facilities.

CWinApp: The Application Class

The main application class in MFC encapsulates the initialization, running, and termination of
an application for the Windows operating system. An application built on the framework must have one
and only one object of a class derived from CWinApp. This object is constructed before windows are
created.
The base class from which you derive a Windows application object.

class CWinApp : public CwinThread
CWinApp is derived from CWinThread, which represents the main thread of execution for your

application, which might have one or more threads.In recent versions of MFC, the InitInstance, Run,
ExitInstance, and OnIdle member functions are actually in class CWinThread.

Like any program for the Windows operating system, your framework application has a
WinMain function. In a framework application, however, you do not write WinMain. It is supplied by
the class library and is called when the application starts up. WinMain performs standard services such
as registering window classes. It then calls member functions of the application object to initialize and
run the application. (You can customize WinMain by overriding the CWinApp member functions that
WinMain calls.)

To initialize the application, WinMain calls your application object's InitApplication and
InitInstance member functions. To run the application's message loop, WinMain calls the Run
member function. On termination, WinMain calls the application object's ExitInstance member
function.

Each application that uses the Microsoft Foundation classes can only contain one object derived
from CWinApp. This object is constructed when other C++ global objects are constructed and is
already available when Windows calls the WinMain function, which is supplied by the Microsoft
Foundation Class Library. Declare your derived CWinApp object at the global level.

When you derive an application class from CWinApp, override the InitInstance member
function to create your application's main window object.

In addition to the CWinApp member functions, the Microsoft Foundation Class Library
provides the following global functions to access your CWinApp object and other global information:

• AfxGetApp Obtains a pointer to the CWinApp object.

• AfxGetInstanceHandle Obtains a handle to the current application instance.

• AfxGetResourceHandle Obtains a handle to the application's resources.

• AfxGetAppName Obtains a pointer to a string containing the application's name. Alternately, if
you have a pointer to the CWinApp object, use m_pszExeName to get the application's name.

AfxGetApp

The pointer returned by this function can be used to access application information such as the
main message-dispatch code or the topmost window.
Return Value

A pointer to the single CWinApp object for the application.

AfxGetInstanceHandle
This function allows you to retrieve the instance handle of the current application.

Return Value
An HINSTANCE to the current instance of the application. If called from within a DLL linked

with the USRDLL version of MFC, an HINSTANCE to the DLL is returned.
 Remarks

AfxGetInstanceHandle always returns the HINSTANCE of your executable file (.EXE)
unless it is called from within a DLL linked with the USRDLL version of MFC. In this case, it returns
an HINSTANCE to the DLL.

AfxGetResourceHandle
Use the HINSTANCE handle returned by this function to access the application's resources

directly, for example, in calls to the Windows function FindResource.

Return Value
An HINSTANCE handle where the default resources of the application are loaded.

AfxGetAppName
The string returned by this function can be used for diagnostic messages or as a root for

temporary string names.
Return Value

A null-terminated string containing the application's name.

AfxSetResourceHandle
Use this function to set the HINSTANCE handle that determines where the default resources of

the application are loaded.

void AFXAPI AfxSetResourceHandle(HINSTANCE hInstResource);

Parameters
hInstResource

The instance or module handle to an .EXE or DLL file from which the application's resources are
loaded.

AfxFindResourceHandle
Use AfxFindResourceHandle to walk the resource chain and locate a specific resource by

resource ID and resource type.
HINSTANCE AFXAPI AfxFindResourceHandle(
 LPCTSTR lpszName,
 LPCTSTR lpszType
);

Parameters
lpszName

A pointer to a string containing the resource ID.
lpszType
A pointer to the type of resource. For a list of resource types,

	Microsoft Foundation Class Library
	Parameters
	Parameters

