
The

Unified Modeling Language

for Object-Oriented Development

Documentation Set
Version 0.91Addendum

UML Update

Grady Booch Ivar Jacobson James Rumbaugh
Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 2

d, re-
 to our
ch ad-
rfaces.
 some

tly, Ivar
 some
o fully
mpass
e-
ge
Copyright ©1996 Rational Software Corporation

2800 San Tomas Expressway
Santa Clara, California 95051-0951
Telephone: 408-496-3600
Fax: 408-496-3636
E-mail: product-info@rational.com
URL: http://www.rational.com

Sales (U.S. and Canada)

(800) 728-1212

International offices

Australia +61-2-419-8455
Brazil +55-021-571-2978
Canada 613-599-8581
France +33-1-30-12-09-50
Germany +49-89-797-021
India +91-80-553-8082
Korea +82-2-579-8926
Sweden +46-8-703-4530
Taiwan +886-2-720-1938
UK +44-1273-624814

International representatives

Israel +972-3-531-3333
Japan +81-3-3779-2541

1. Overview

1.1 Purpose

This document is an addendum to the version 0.8 documentation set for the Unified Metho
leased in October 1995. The purpose of this version 0.91 document is to provide an update
work which has evolved due to continued efforts at unification, public feedback, and resear
dressing new elements of modeling, namely, the issues of distribution, concurrency, and inte
This version 0.91 replaces the previous addendum version 0.9; it has the same content with
additional material and some slight revisions.

Much has happened since the release of the version 0.8 documentation set. Most importan
has joined our team. The 0.8 documentation set, written by Grady and Jim, had addressed
elements of use case modeling, but now with Ivar as an equal partner we have been able t
assimilate his work. This effectively means that the scope of our activities has grown to enco
the unification of the Booch, OMT, and OOSE methods. As part of this growth we have also r
named our work, changing it from the Unified Method (UM) to the Unified Modeling Langua
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 3

tation

ler.
ade the

cleaner
s in
 inter-

 provide
w and

ct to
lete

e
o-
nd

ntegra-
 se-

ut are
to

e

d sev-
d the
u told
. Be-

age per-
 are
ution

ck,
 Kyzi-
unica-
(UML). This name change reflects the fact that we have chosen to decouple our work on no
and semantics from that of process. Section 2.1 explains this change in more detail.

As part of our continued efforts at unification, we have worked hard to make the UML simp
This means that we have collapsed some related concepts into more general ones, we’ve m
notation more regular and even eliminated some symbols, and we’ve made the metamodel
and smaller. Along the way, we’ve also found opportunities to reuse existing UML semantic
creative ways. This has enabled us to attack the problems of distribution, concurrency, and
faces with minimal increase in the size of the UML

1.2 Organization

This document is an addendum to the version 0.8 documentation set, and as such does not
a complete metamodel for the UML. Rather, it concentrates upon what’s changed, what’s ne
different, and what’s left to accomplish. Our version 1.0 documentation set, which we expe
deliver in late 1996/early 1997 in conjunction with our OMG submission, will provide a comp
metamodel.

The core of this document is organized in three major sections:

2. What’s Changed This section addresses various naming changes (including th
change to the UML designation), changes to the syntax of stere
types, and changes to the syntax and semantics of packages a
nodes.

3. What’s New This section addresses the semantics of stereotypes and the i
tion of use cases (two improvements to the UML) as well as the
mantics of interfaces, distribution, and real time modeling (new
features to the UML).

4. Tentative ProposalsThis section includes some proposals that are not yet final, b
being considered for inclusion in the UML. Readers are invited
comment on these proposals.

5. What’s Left This section provides a schedule of UML developments over th
next several months and the work that remains to be done.

1.3 Acknowledgments

Since the publication of the 0.8 documentation set for the Unified Method, we have distribute
eral thousand copies and have received feedback from hundreds of individuals from aroun
world. Thank you: your comments have given us much valuable guidance. Not only have yo
us what you‘ve liked, but you’ve told us what we’ve needed to fix, and what we were missing
cause of the volume of comments, we simply have not been able to respond to every mess
sonally, but be assured that we are still tracking every comment we have received, and we
striving to address all substantial issues. Unfortunately, we can’t acknowledge every contrib
personally, but we’d like to give special thanks to a few individuals for their detailed feedba
namely, Michael Chonoles, Peter Coad, Bruce Douglas, Don Firesmith, Martin Fowler, Paul
vat, Jim Odell, Dan Tasker, Jeff Sutherland, and various groups of developers at AG Comm
tion Systems and Andersen Consulting.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 4

erab

ate of-

ay be
 firms,
d sup-
mply
ith a
ake

us first.
r use

wledge
e

ort for
t us.

a to the

e UML
1.4 Points of Contact

Comments on any aspect of the UML should be sent directly to all three of its authors, prefly
via e-mail. Our individual addresses are:

Grady Booch egb@rational.com

James Rumbaugh rumbaugh@rational.com

Ivar Jacobson ivar@rational.com

You can also post a message to all three of us at once using the following address:

amigos@rational.com

Finally, you can send comments to us via snail mail, using the address for Rational’s corpor
fices as listed on the copyright page of this document.

1.5 Copyright

The UML is an open standard; it is not a proprietary Rational language. As such, the UML m
used freely by anyone, anywhere. We are actively encouraging other tool vendors, training
consulting firms, authors, and developers to adopt the UML so that there will be wide-sprea
port for all users of the UML. We have a copyright notice on this and other UML documents si
to prevent commercial for-profit reproduction. If you want to share copies of this document w
colleague, then simply make a complete copy and acknowledge its source. If you want to m
hundreds of copies and then sell them or use them for a training course, then please talk to
If you want to use this material to build a tool, develop a new training course, write a book, o
in your projects for development, then we encourage you to do so, but please again ackno
its source, and remember that the UML is almost (but not totally) finished and therefore som
things might change. It is in the best interests of the market for there to be consistent supp
and use of the UML; if you find holes or areas of ambiguity in using the UML, please contac
Now is the time to address the remaining loose ends.

1.6 Changes from Version 0.9

This document replaces the previous document version 0.9, both of which represent addend
base document version 0.8. The following change have been made to version 0.9:

Use of constraints to specify details of generalization and powertypes.
Change in notation for objects and other instance elements.
Clarification of the definition of event.
Definition of activity diagrams as a refinement of state diagrams.
Clarification of he relationship among use cases, interactions, and patterns.

2. What’s Changed

2.1 Name Changes

There are two major name changes since the version 0.8 documentation set: the name of th
itself, and the names of certain diagrams.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 5

cided

n sta-

 and

at it
lan-
iversal
 works
trib-
he ar-

L
. It is our
rticular

ers and

y un-
g upon
UML

i-
as “se-
ce
s) and
he name
gotten
mong

e
ams”
 ongoing
of phys-
yment
ly over-
ogy of
In the 0.8 documentation set, we referred to our work as the “Unified Method.” We have de
to change the name to the “Unified Modeling Language,” or “UML” for short. We made this
change for three reasons:

• Feedback from the market indicated that we would add the most value by focusing o
bilizing the artifacts of software development and not the process.

• Our unification efforts were already focusing upon the graphical modeling language
its semantics and far less so on the underlying process.

• The UML is intended to be a universal language for modeling systems, meaning th
can express models of many different kinds and purposes, just as a programming
guage or a natural language can be used in many different ways. Thus, a single un
process for all styles of development did not seem possible or even desirable: what
for a shrink-wrap software project is probably wrong for a one-of-a-kind globally dis
uted, human-critical family of systems. However, the UML can be used to express t
tifacts of all of these different processes, namely, the models that are produced.

Our move to the UML does not mean that we are ignoring the issues of process. Indeed, the UM
assumes a process that is use case driven, architecture-centered, iterative and incremental
observation that the details of this general development process must be adapted to the pa
development culture or application domain of a specific organization. We are also working on pro-
cess issues, but we have chosen to separate the modeling language from the process.

By making the modeling language and its process nearly independent, we therefore give us
other methodologists considerable degrees of freedom to craft a specific process yet still use a com-
mon language of expression. This is not unlike blueprints for buildings: there is a commonl
derstood language for blueprints, but there are a number of different ways to build, dependin
the nature of what is being built and who is doing the building. This is why we say that the
is essentially the language of blueprints for software.

The names of four diagrams have been changed. In version 0.8, we referred to “message trace d
agrams” and “object message diagrams.” In the UML, we now refer to these two diagrams
quence diagrams” and “collaboration diagrams” respectively. We chose the name “sequen
diagram” because it was a more general term (such diagrams involve more than just event
because it emphasized its focus on the time-ordered sequence of transactions. We chose t
“collaboration diagram” because it was a more general term (the term “object diagram” had
terribly overloaded) and because it emphasized its focus on the patterns of collaboration a
sets of objects.

Additionally, in version 0.8, we referred to “module diagrams” and “platform diagrams.” In th
UML, we now refer to these two diagrams as “component diagrams’ and “deployment diagr
respectively. In the case of component diagrams we have made the name change because
use has led us to realize that these diagrams are more generally useful in modeling all sorts
ical components (such as dynamic libraries) as well as more static files. In the case of deplo
diagrams, we have made the name change because the term “platform’ turned out to be high
loaded, and the term “deployment” reflected the diagram’s true semantics, namely, the topol
the deployed system.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 6

n
 the se-

otype
is-

d
ist (such
he list

ntually
gram-

written

ffect
 model.
lper op-

2.2 Syntax of Stereotypes

In the UML, the role of stereotypes and properties has been greatly expanded, for they have prove
to be powerful mechanisms that are both general and extensible. Section 3.2 explains how
mantics of stereotypes and properties have been improved. Also, the syntax of stereotypes has been
changed. In the 0.8 documentation set, we designated a stereotype by enclosing the stere
name in parenthesis. Because parentheses are used in many other places and are not visually d
tinctive, we have changed the notation for stereotypes to guillemets («») , which bracket the ste-
reotype name as in «exception» . For convenience a guillemet can be typed as two angle-
brackets but most typefaces support them as single characters. The stereotype notation can be use
to mark an element, such as a class, package, or association. It can also be used within a l
as a list of attributes or operations) in which case it applies to the succeeding elements in t
until countermanded.

We had considered the use of the exclamation point (!) to introduce a stereotype, but we eve
dropped this idea, for too many people confused it with the not operator found in many pro
ming languages.

Figure 1 provides an example of the syntax for stereotypes.

In this figure, we see a class named BadSocket whose stereotype is exception . By stylistic
convention, we put the name of the class in bold face, while other elements of the class are
in normal face.

The same stereotype notation may be used to group operations. For example, the operations get-
ID and setID are classified as access operations, and the operation setSocket is a helper
operation. Access and helper both qualify as operation stereotypes, because they are in e
metaclassifications of each operation and describe how the operations are used within the
For example, access operations can be generated automatically from the attributes and he
erations are meant for internal use only. Operations throw and log have no stereotype; they are
just ordinary public operations.

«exception»
BadSocket

throw()
log(String)
«helper»
setSocket(Socket)
«access»
getID():SocketID
setID(SocketID)

Figure 1: The Syntax of Stereotypes
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 7

 as a
en-

stract
ntion is
signa-

eral-
rent di-
n
a Carte-
lasses,

class

tion
ss
. Now
 arcs
erclass;
a par-
n.)

(Figure
“{dis-
an one
alAc-
 This
s. For ex-
r mul-
hin
ected
d inde-
es are
2.3 Generalization

Figure 2 illustrates one minor change to the generalization relationship: we now render this
directed line with a closed, unfilled triangular arrowhead at the superclass end (in the 0.8 docum
tation set, we rendered this as a filled triangle).

We have shown another stylistic convention here. Specifically, we have used italic font for ab
classes (and operations) and normal font for concrete classes (and operations). This conve
a shorthand notation for including the property “abstract” with the class name (or operation
ture), but it may be particularly convenient for large lists of classes and operations.

Figure 3 shows a change in syntax from the V0.8 definition of “and-generalization.” And-gen
ization occurs when a superclass generalizes more than one independent dimension. Diffe
mensions represent orthogonal abstract ways of describing an object. Each dimension is a
incomplete view of the superclass. Concrete classes are formed by multiple inheritance as
sian product of the different dimensions. In other words, a concrete class has a list of superc
one from each dimension of generalization of the original abstract class. For example, the
Sailboat is a subclass of WindPoweredVehicle and WaterVehicle ; the class Truck is
a subclass of MotorPoweredVehicle and LandVehicle . This construct is semantically
equivalent to forming the Cartesian product of the different dimensions, even if all combina
subclasses (such as Sailboat and Truck) are not shown. In V0.8 we required a dummy cla
for each dimension, which was unnatural and unworkable in a system with many packages
we allow a discriminator label to be attached to a generalization arc. If several generalization
share the same label, then they represent the same dimension of generalization of the sup
different labels define independent dimensions of generalization. (The “empty” label is just
ticular label, so that a generalization without any labels is just a special case of a dimensio

Note that constraints can be used to indicate relationships among the different subclasses
4). If all of the subclasses of a given superclass are completely disjoint, use the constraint
joint}”. This indicates that no descendent of the superclass may be a descendent of more th
of the subclasses. For example, no Account may be both a BusinessAccount and a Person
count. If the subclasses are not mutually exclusive, then use the constraint “{overlapping}”.
indicates that a descendent of the superclass may be an instance of more than one subclas
ample, a Vehicle may be both a LandVehicle and a WaterVehicle. This would require eithe
tiple inheritance (for example, a class AmphibiousVehicle) or else multiple classification wit
the existing class structure. The constraint is shown by drawing a dotted line across the aff
generalization lines and attached the constraint keyword to it. The constraint may be applie
pendently to the arcs in separate dimensions of and-generalization. If the generalization lin

Handler

KeyboardHandler MouseHandler JoystickHandler

Figure 2: Generalization
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 8

t key-
s the is-

itance
s. For
rther

pts of
ry use-
ctly sup-
e
e used

fferent
k for
 we
 be ex-
.4 for an

e exten-
lasses.
ich are

pe»; it
e by in-
ribute
ame of
drawn so that they share a single arrowhead segment (a stylistic option), then the constrain
word can be attached to the arrowhead segment directly. The absence of a constraint leave
sue unspecified. (The presence of overlapping classes can be inferred when multiple inher
occurs in the class diagram.) Other constraints can be applied to sets of generalization line
example, the constraint {complete} might indicate that the generalization is complete and fu
subclasses may not be added.

Further clarifying the semantics of generalization, we do not assume or preclude the conce
dynamic classification and multiple classification (the terms are due to Odell). These are ve
ful ideas for analysis, but some users may choose to forgo them because they are not dire
ported by the leading OO programming languages. Concepts such as dynamic and multipl
classification are properties of the dynamic environment; the same static class model can b
with either assumption. There are many other properties of the dynamic environment that di
users may want to vary. We do not feel that a single definition of dynamic semantics will wor
all purposes. Accordingly, as part of our work toward formal specification of UML semantics
are investigating mechanisms to support “pluggable semantics” that permit the language to
tended. These mechanisms could be used to tune the execution semantics. (See section 3
example using the «becomes» relationship to represent dynamic classification in action.)

Stereotypes and constraints can be combined to define “power types” (Odell has used thes
sively in his writings). A power type is a metaclass whose instances are a set of sibling subc
For example, the class TreeSpecies has as instances the classes Oak, Elm, Birch, etc., wh
the subclasses of class Tree. A power type may be indicated with the stereotype «powerty
may be attached to a set of generalization arcs or to the shared root of a generalization tre
dicating its name as the type of the discriminator (Figure 5). A discriminator may have an att
name (it represents an implicit attribute in the superclass), a type name (it represents the n
the power type whose instances are the subclasses themselves), or both.

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue
venuepowerpower

SailboatTruck

Figure 3: And-generalization with discriminator labels
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 9

tion
howing
 shown
gram).
rom a
appro-
s
. To
In the final UML document we will suggest some hints to tool builders to provide optional nota
to enhance user comprehension of models. One such suggestion is an optional notation for s
an incomplete generalization, i.e., a diagram in which some subclasses of a superclass are
but others are missing from a particular diagram (presumably they are shown on another dia
We suggest the ellipsis symbol “…” to explicitly indicate that some subclasses are missing f
diagram. We propose that editing tools automatically generate or suppress this symbol as
priate (i.e., it is a statement that the view omits something, not a statement that the model lack
something). This convention could also be used for associations, attributes, operations, etc
avoid visual overload such visualization options must be dynamically selectable.

Account

Business
Account

Personal
Account

Figure 4: Subclass constraints (various drawing styles)

{disjoint}

Vehicle

WindPowered
Vehicle

MotorPowered
Vehicle

Land
Vehicle

Water
Vehicle

venue {overlapping}

power

{overlapping}

Tree

Oak Elm

{disjoint, incomplete}

Birch

«powertype»
TreeSpecies

Figure 5: Showing power types

species:TreeSpecies
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 10

value/
n ar-
e-

m the
ight

ther

ent.

e” im-
t must
ecified
gation,
ple-

lies a
y-ref-
tically
ternal

r side.

ies for
ML,

ich can
. We call
We

 mech-
2.4 Association Navigation

In the version 0.8 documentation set, we defined navigability as an element of the role affiliated
with each end of an association relationship; however, we combined its symbol with the by-
by-reference distinction. In the UML, we have decided to designate navigability with an ope
row, as illustrated in Figure 6. Navigability is visually distinguished from inheritance, which is d
noted by an unfilled triangular arrowhead icon near the superclass.

In Figure 6, we have marked the association as navigable only in one direction, namely, fro
Handler to the Client , but not the reverse. This might indicate a design decision, but it m
also indicate an analysis decision to partition the system into packages such that the Client class
is frozen and cannot be extended to know about the Handler class, but the Handler class can
know about the Client class.

We chose this particular notation for navigability for two reasons:

• It was consistent with the use of the open arrowhead to show directionality in all o
uses.

• It was visually striking, but not so overwhelming that it stood out as a primary elem

A related change is a reassessment of the “by-value” adornment for associations. A “by-valu
plementation always implies aggregation: the value is physically part of the other object, so i
be an aggregation. Therefore it is dangerous and unnecessary to allow “by-value” to be sp
separately from aggregation. We have realized that this is really an adornment on an aggre
a “tightly-bound” implementation of an aggregation. Therefore, the notation for “by-value” im
mentation is now a solid (filled) diamond on the aggregation symbol; a hollow diamond imp
“by-reference” aggregation, the normal default. The small squares to mark “by-value” and “b
erence” are thus subsumed by this approach. Note that a “by-value” aggregation is seman
equivalent to an attribute, but may be visually more appealing when the part has its own in
structure.

There are certain rules on compatible adornments of associations:

• Only one side (at most) of an association can be an aggregate.
• If one side is a “by-value” aggregation, then the association is navigable to the othe

2.5 Packages

In the version 0.8 documentation set, we used two different grouping mechanisms—categor
the logical model and subsystems for the code model—each with a distinctive icon. In the U
we decided to collapse these two mechanisms into one all-purpose packaging construct, wh
also be used for other groupings of modeling elements, such as use cases and processors
such a grouping a package and we draw it as a familiar desktop, namely, the “tabbed folder.”
made these changes for three reasons:

• We needed a grouping mechanism elsewhere, and found that we kept adding new
anisms that were all very similar.

ClientHandler

Figure 6: Association Navigation
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 11

made it

 if they
ecture.

r pack-
 and im-

in
ermost
 of the

by
n-line

ed ele-
• The semantics of categories and subsystems were similar, and use of stereotypes
possible to introduce a more general concept yet retain some distinctions.

Figure 7 provides an example of several packages. In this figure we see four packages: Clients ,
Business Model , Persistent Store, and Network . In this sample diagram we show
two classes inside the Business Model package, together with one nested package, Bank . A
real model would have many more classes in each package. The contents might be shown
are small, or they might be suppressed from a high-level diagram showing the system archit
The entire system is a package.

This figure shows a fairly regular hierarchical structure, with packages dependent upon othe
ages. As in the 0.8 documentation set, we use the dependency relationship to show design
plementation dependencies. For example, we note that the package Clients depends upon the
packages Business Model and Network directly, meaning that one or more elements with
Clients depends on one or more elements within the other packages. Three of these out
packages are shown in an elided form (and by convention we place their name in the body
icon to save space), whereas the package Business Model is shown partially expanded. In this
case, we see that the package Business Model owns the classes Customer and Account as
well as the package Bank. Ownership may be shown by a graphical nesting of the icons or
the expansion of a package in a separate drawing (which might be more convenient in an o
tool). Thus, it is possible to show relationships to the containing package as well as to nest
ments.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 12

s its con-
her ele-
 in a
 the
he
 but
thin a

d con-
ntents.
 their
perties
o specify
The semantics of packages do not change from the 0.8 documentation set: a package own
tents and defines a nested name space for its contents. This means that every class (or ot
ment) may belong to exactly one package. In other words, packages partition the elements
model. A package may contain references to classes owned by other packages. In cases when
other packages are not shown, such references must be marked with fully qualified names, in t
form PackageName:: ClassName . A package can add associations to referenced classes
cannot modify their contents (attributes and operations). The navigability of associations wi
package must be compatible with the visibility of the underlying classes.

Packages provide an organizational structure for the model, including grouping, naming, an
figuration control units. Otherwise, packages do not add semantics beyond those of their co
However, they may be used to understand models by summarizing semantics derived from
contents. Used in a top-down fashion for design, packages permit designers to constrain pro
of their contents, such as dependencies on other elements, and therefore they can be used t
semantics of groups of elements at a high level.

Clients

Business Model

Customer

Account

Persistent Store

Network

Bank

Figure 7: Packages with Dependencies
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 13

y be
 to des-
, as the
usual se-
h one

 now
ating a
d iconi-
nd hold

e-dimen-
 to col-

nts.

e gen-

des. A
-
ith no
hich

”

o of
-
how a
 server.
ve
within
e could
s in an
istin-
Packages turn out to be a wonderfully general mechanism for organizing models. They ma
used to designate not only logical groupings and physical ones, but they may also be used
ignate use case groups and processor groups. A use case group and a processor group is
names suggest, a packaging of use cases and processors, respectively. In each case, the
mantics of package ownership apply. Also as usual, stereotypes may be used to distinguis
kind of package from another.

2.6 Nodes

The version 0.8 documentation set adopted the use of platform diagrams, which in 0.91 we
name deployment diagrams. These diagrams contained two different symbols, one design
processor and the other designating a device. We distinguished these two semantically an
cally. In particular, processors had computational resources and thus could run processes a
objects, whereas devices could not. Both processors and devices were rendered as a thre
sional rectangular shape, but with processes having shaded sides. In the UML, we decided
lapse these two concepts into one. We made this change for two reasons:

• In real systems, it is rare to encounter any device that has no computational eleme
What looks like a device to one system probably looks like a processor to another.

• Improvements in the semantics of stereotypes made it possible to introduce a mor
eral concept.

In the UML, we call the elements that contain resources (including CPUs and memories) no
node thus represents a resource in the real world upon which we can distribute and execute ele
ments of our logical models. A node is rendered as a three-dimensional rectangular solid w
shadows. This icon is simple to draw and still conceptually different from all other elements, w
are all drawn as two-dimensional shapes. It also conveys the idea of a “physical presence.

Figure 8 provides an example of a deployment diagram. In this figure we see six nodes. Tw
these nodes (Fax and Printer) are designated with the «device» stereotype since, in the con
text of this system, they are not computationally interesting; it is of course not required to s
node’s stereotype. Three of the remaining nodes are adorned with roles with respect to the
For example, there are a set of PC nodes for Order Entry . Nodes are classes and thus can ha
the properties that classes have. In this case we have shown the multiplicity of each class
the entire system: many order entry PCs and many printers and one of each other node. (W
also draw an instance-level version of this diagram to show a particular deployment of node
individual instance of a system.) Notice also that we have used the stereotype notation to d
guish different kinds of connections; in this case the system employs ISDN connections.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 14

ction is
 Rather
d to
 same

e in-
erlined.
rawn as

 colon).

nd se-
howing
e gen-

 pattern
 dia-

ets
d of

grams.
rrent
2.7 Notation for Objects

Classes and objects are a pair of elements that have a type-instance distinction. This distin
also possible for many other kinds of elements, such as use cases, operations, states, etc.
than trying to invent new symbols each time this distinction must be made, we have decide
adopt a uniform way of mapping between types and instances: For any kind of element, the
graphic symbol is use for the type construct and the instance construct. However, within th
stance construct the designator string (the instance name, colon, and the type name) is und
For example, a class is drawn as a rectangle containing the name of the class; an object is d
a rectangle with an underline name of the object name and its class name (separated by a
See Figure 9 and other diagrams for an example of the notation for objects.

2.8 Conditionals in Interaction Diagrams

A scenario is a single execution history of an interaction. Because collaboration diagrams a
quence diagrams did not have conditional branches in version 0.8, they were restricted to s
scenarios. This meant that they could only show individual executions of a system and not th
eral interaction pattern. We have realized that there is no reason why the general interaction
should not be shown. Therefore, we have added a notation for conditionals to collaboration
grams and sequence diagrams. Accordingly, we collectively call them interaction diagrams be-
cause they document general interactions.

In a collaboration diagram, a conditional is indicated with a guard condition in square brack
(Figure 9), the same notation used for synchronizing with another thread (which is also a kin
guard condition on execution), and the same notation used for guard conditions in state dia
In addition, each arm of the condition is labeled as a separate thread, the same as a concu

PC

PC

PC

Server

Fax

Printer

1

*

*

1

1

1

«ISDN»

«ISDN»

«ISDN»

Order Entry

Receiving

Purchasing

«device»

«device»

Figure 8: Nodes in a Deployment Diagram
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 15

 given
fore a
xecuted

llel tar-
inite
gram
sepa-
nt con-
 entire
agrams.

rallel
 are

-

r as-
gram:

cates
 as the
thread. A branch is simply a pair of parallel threads in which only one thread is chosen on any
pass; a concurrent fork is a pair of parallel threads in which both threads are chosen. There
given named sequence in the messages indicates a single thread of control that is always e
sequentially.

In a sequence diagram, a conditional is indicated by splitting a message arrow into two para
gets (Figure 10). Note that in the x=0 case in this example, neither branch is taken. As with f
state machines, at any given branch point, the conditional expressions in an interaction dia
must be unambiguous. A branch of control may require “splitting” the target object into two
rate, parallel traces that represent alternative histories. This notation works if the subseque
trol patterns are not too complicated. In cases of nested conditionals, it is better to “split” the
sequence diagram by duplicating it or by separating the subsequences into separate subdi

We make the observation that a conditional is merely a fork of control into two (or more) pa
threads that may not both execute together. In other words, conditionality and concurrency
closely related.

Figure 10 also shows a recursive call (on the operation “more ”). We have decided to use the intu
itive notation from the Siemens pattern group’s Object Message Sequence Charts1 (OMSC) in
which recursive calls are shown by stacking multiple activities on the object lifeline. Anothe
pect from (OMSC) is the notation for creation and destruction of objects in the sequence dia
The object icon is drawn level with the arrow for the operation that creates it; a large “X” indi
the destruction of an object, usually by external command but in this case a self-destruction

1. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal. Pattern-Oriented
Software Architecture: A System of Patterns. Wiley, 1996, ISBN 0471958697.

[x>0] 1.A1: foo(x)

[x<0] 1.B1: bar(x) 1.A1.1: doit(z)

1.B1.1: doit(w)

op()

ob1:C1
ob2:C2

ob3:C3 ob4:C4

2: more()

Figure 9: Collaboration Diagram with Conditional
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 16

pre-

ML
 extend
d the
last act of a method before returning. An arrow to a vertical dotted line indicates a call to a
existing object.

3. What’s New

3.1 Semantics of Stereotypes and Properties

In the version 0.8 documentation set, we introduced a general property mechanism for all U
elements. The purpose of this mechanism was to provide a simple yet expressive means to
the UML in ways that we could not yet then imagine. Part of this property mechanism include

op()

[x>0] foo(x)

[x<0] bar(x)

doit(z)
doit(w)

more()

ob1:C1

ob2:C2ob3:C3 ob4:C4

Figure 10: Sequence Diagram with Conditional, Recursion, Creation, and Destruction
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 17

 as we

asses
ur
at we
uch as
s dis-
ss in
uch as
lowed
eedom
 we al-
s, asyn-

fy all
sage
 lan-
antics

ely be-
ntics

 within
rs
pes.
itted

n.
tereo-
ers.
r edit-

e can
at pro-
ludes

s in
n)..

era-

 of a
concept of a stereotype, which was essentially the metaclassification of a UML element or,
sometimes called it, the property that had no name.

Our initial work with stereotypes was motivated by a desire to distinguish various kinds of cl
in a model (the word “stereotype” comes from Rebecca Wirfs-Brock). As we continued in o
work on unification, we discovered that stereotypes were a far more powerful mechanism th
first realized. First and foremost, they helped us address the problem of metaclassification, s
distinguishing exception classes which should generally only be thrown or caught as well a
tinguishing various kinds of analysis objects as found in OOSE (and which we further discu
section 3.2). Second, they enabled us to collapse semantically similar concepts into one (s
nodes, as we discussed in sections 2.5 and 2.6), thereby simplifying the UML. Third, they al
us to define core UML semantics very precisely, yet allowed end users some degrees of fr
in tailoring the language to their needs. For example, as we describe further in section 3.5,
ready understand the most common forms of message synchronization (simple, synchronou
chronous, and various timed synchronization) but there is no way that we could ever speci
forms of synchronization, for not all of them yet exist. For example, the Java model of mes
synchronization is different than that of Ada’s and it’s likely that as experience with internet
guages grow, other models will arise. In our approach, the UML can adapt to these new sem
without altering core UML semantics.

In the version 0.8 documentation set, we underspecified the semantics of stereotypes, larg
cause we didn’t exactly understand their implications. Now, we can finally state their sema
more precisely. Specifically:

• A stereotype represents the metaclassification of an element. It represents a class
the UML metamodel itself, i.e., a type of modeling element. It is a way to allow use
(methodologists, tool builders, and user modelers) to add new kinds of modeling ty

• Every element in the UML may have at most one stereotype; this stereotype is om
when the normal predefined UML modeling semantics suffice.

• There is a separate list of stereotypes for each kind of UML element.
• We predefine some of these stereotypes, but we also allow users to define their ow
• Stereotypes have semantic implications which may be specified for every specific s

type value. We are investigating ways to allow the semantics to be specified by us
Meanwhile the semantics can be stated in natural language or built into a particula
ing tool.

A predefined stereotype is one whose value and semantics we define as part of core UML. W
think of at least two kinds of stereotypes: those with specific added semantics and those th
vide convenient conceptual grouping but don’t really add to the semantics. Our current list inc
the following predefined stereotypes with semantics:

• Class and object stereotypes
• Event Designates a noteworthy occurrence that triggers transaction

finite state machine models (so that its structure may be show
• Exception Designates an event that may be thrown or caught by an op

tion.
• Interface Designates the interface of a class or a package, consisting
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 18

ir dy-

s in

y
ntics

al other
relation-

ore

cation,
 as per-
termi-

eloped
ype to
he
hical
 might

 might
 all
set of message names and their signatures together with the
namic semantics

• Metaclass Designates the class of a class (as in Smalltalk).
• Utility Designates a named collection of non-member functions.

• Task stereotypes
• Process Designates a heavy-weight task attached to its own address

space.
• Thread Designates a light-weight task that executes with other thread

the same address space of an enclosing process.

The following lists are offered for convenience; they are not formally a part of the UML. The
might be used in a tool to change the rendering, but they don’t really have additional sema
beyond the nature of the things they contain:

• Package stereotypes
• Category
• Processor group
• Module group
• Subsystem
• Service package
• Use case group

• Node stereotypes
• Device.
• Processor
• Memory

• Object type stereotypes (from OOSE; other methods have also defined similar lists)
• Entity object type
• Control object type
• Interface object type

Relationships may be adorned with stereotypes as well. In fact, section 3.2 describes sever
predefined stereotypes that map to concepts in OOSE, some of which are attached to class
ships.

Our list of predefined stereotypes is not yet complete. All of these lists will likely evolve bef
the final UML report is prepared.

Tagged values are extensible properties consisting of an arbitrary textual tag and a value. We are
also compiling lists of recommended tags. Section 3.4 describes one new predefined tag, lo
which denotes the node to which the item is attached. We are considering other tags, such
sistence, which would denote if an object’s state is transient or sticky (or replicated or inde
nate; the list of possible values is open-ended).

There is one other important improvement to the notation for stereotypes that we have dev
since the 0.8 documentation set. Specifically, we recommend that tools allow every stereot
be further distinguished by style (color, line thickness, fill pattern, font) as well as by icon. T
purpose of this improvement is to permit tool builders and end users to tailor the UML‘s grap
syntax in controlled ways, and to permit models to have special visual cues. For example, we
wish to have all exception classes stand out by rendering them in color. To do so, the user
designate the stereotype exception to be mapped to red, and then attach this stereotype to
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 19

r should

permit
 the ed-
lue;
 ren-

rovid-
views
 is a
 by dis-
three
es addi-
ies of
ecified
rtments
 with
tc.,
 benefits

seman-
d sce-
odels

 inte-
l com-

 icon for
the
relevant classes. Because support for color varies among systems (and people!) use of colo
be reserved to the individual user, rather than being predefined in UML.

On the other hand, attaching an icon to a stereotype is a bit more universal. In the UML, we
users to attach an icon to a stereotype. (The details of specifying the image would be up to
iting tool.) In its canonical form, this icon may be displayed to the right of the stereotype va
Figure 11 provides such an example (middle). In its expanded form, this same item may be
dered simply with the icon and the item’s name, as in Figure 11 (right side). In fact, the three items
in Figure 11 are semantically equivalent; they are just rendered differently.

Tools may permit and provide alternate views of UML symbols beyond those that we have p
ed. In fact, one of the major values of a tool is to provide ways for users to dynamically alter
of models to highlight various topics of interest. For example, the canonical form of a node
three-dimensional rectangle; tools may render nodes in more domain-specific ways, such as
playing the icon for a PC. Similarly, we have specified that a canonical class icon contains
compartments, one each for the name, the attributes, and the operations. For some purpos
tional compartments are useful, for example, a list of business rules or a list of responsibilit
the class. It is permissible for tools to add additional compartments whose syntax must be sp
by the toolmaker. We have already noted that compartments or selected contents of compa
should be suppressible within views. We support similar extensions in this spirit. However,
all extension mechanisms, including stereotypes, properties, view tailoring, special icons, e
there is a danger of creating a private language that others cannot understand or use, so the
of special extensions must always be weighed against the loss of a common base.

3.2 Use Cases

Since the introduction of the 0.8 documentation set, we have worked to integrate the OOSE
tics of use cases fully into the UML. We had gotten the structural elements of use cases an
narios fairly right, but we had not addressed the elements of OOSE’s analysis and design m
very well at all, nor had we considered the implications of robustness analysis. In doing this
gration, we found that UML’s stereotypes helped us add these features with little additiona
plexity.

We treat actors as classes with stereotypes for their semantics and notation. The stereotype
an actor is a stick figure, as in Figure 11. As with any stereotyped class, either the class icon or
stereotype icon can be used.

Customer
Customer

«actor»

Customer

«actor»

Figure 11: Stereotype Icons
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 20

ct actors
y have
te in in-

 and col-
ed, it is
l other
ibutes

f map-
e of these
quence
ur on
sses,

nto at-

so
se; this
stituent
rocess
ntities.
lation-

ue, and
del di-
s. The
 models,
ally, we
tics.

tors as
 of class-
e a
le, to
 a sys-

cally,
es when
an just
Generalization applies to actors and use cases. Concrete actors are specializations of abstra
and concrete use cases are specializations of abstract use cases. Furthermore, actors ma
(communication) associations with use cases, meaning that instances of the actor participa
stances of the use case. Use case classes may be related to other use cases classes by the extends
and uses relationships; we regard these as stereotypes of the generalization relationship.

Interactions between actors and use cases can be described with both sequence diagrams
laboration diagrams.Both actors and use cases can be described in words, of course. Inde
particularly important to identify the purpose of a use case in words. There are also severa
means of modeling use cases, for example, by listing their responsibilities, by listing their attr
and operations, and by defining their patterns of interaction using state machines.

Managing use cases at the user requirement level is fairly straightforward. The complexity o
ping use cases to design artifacts increases as a model progresses to the design stage. Som
design artifacts include internal classes, packages, and interfaces. Interaction diagrams (se
diagrams and collaborations diagrams) provide a way of doing this mapping, which can occ
several different levels. First, responsibilities of the use case are allocated to supporting cla
package, and interfaces in the design model. Attributes of the use case must be mapped o
tributes or associations of the supporting classes. Next each operation in the use case must be
mapped onto operations on classes. Finally the flow of control among objects must be designed
that the proper operations are invoked at the proper times within the execution of the use ca
can be shown on interaction diagrams for the system as well as state diagrams for the con
classes. The degree of formalism employed in the mapping depends on the development p
followed. The UML does not prescribe a particular mapping between use cases and other e
The mapping required by any particular process can be modeled using UML dependency re
ships with appropriate stereotypes.

In the UML, integration of OOSE semantics also encompasses the following elements:

• The use of stereotypes to model interface, entity, and control objects
• The use of stereotypes to model the OOSE association stereotypes

Clarifying the relationship of use cases to scenarios and classes was largely a semantic iss
had no notational implications. In 0.8, we had originally attached use cases to the class mo
rectly, but we eventually realized this was wrong: use cases stand as peers to class model
package scoping mechanism can accommodate various approaches to organizing system
including independent use case models and class models as well as other possibilities. Fin
may also attach state machines to use cases to definitively specifying their dynamic seman

In the 0.8 documentation set, we had rejected the stick figure icon for actors, and treated ac
objects. This was wrong: actors are classes. Actors may be modeled as a special stereotype
es with their own stereotype icon. The UML is actually thus more general than OOSE, sinc
project could identify other stereotypes for classes that interact with use cases. For examp
model a system of interconnected systems, a project might introduce a stereotype denoting
tem class.

Interface, entity, and control objects from OOSE can be handled in the same fashion. Basi
these are just stereotypes of classes, and so a project can predefine these three stereotyp
following an OOSE process. Other processes with different lists of predefined stereotypes c
as easily be handled.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 21

 report
nism,
troduc-
ocia-

ering a

ncies

 set of
support

ries and
on of
tions,

 for

s
-

eal of
i-
OOSE’s process has a rich set of association stereotypes; in practice, users of this process
that this set is necessary but sometimes insufficient. Again, using UML’s stereotype mecha
we can satisfy the OOSE association stereotypes but at the same time leave room for the in
tion of other kinds of associations. The following table illustrates the mapping of OOSE ass
tions into UML. Note that this mapping requires no new special notation:

In OOSE, requirements are first class citizens, but there was no means of graphically rend
requirement. In UML, we may use attach the stereotype requirement to a note, and thereby
graphically reify this concept. Using existing UML semantics, we may thus show the depende
of a requirement to other modeling elements.

3.3 Interfaces

In pushing the semantics the UML further, we found the need to model interfaces. An interface is
a class stereotype that designates the external face of a class or a package, consisting of a
operations and their signatures together with their dynamic semantics. Other classes may
or use an interface; we thus say that a class conforms to an interface in a particular role. The role
describes the part played by each class within the interface; normal interfaces have supplier and
client roles that complement each other. Such semantics are adequate to describe most libra
frameworks, such as the interfaces found in Microsoft’s COM as well as in Java’s concepti
interfaces. Whereas in COM and Java interfaces are largely only static named groups of opera
the UML permits attaching dynamic semantics, so that a partial ordering of operations legalan
interface may be specified. We call specification of legal activity sequences the protocol of the in-
teraction. For real-time applications more complicated protocols are necessary to describe pattern
of interaction, including multiple roles, two-way communication, and constraints on interaction se
quences.

We examined a number of existing approaches to specifying interfaces and found a great d
similarity among them. These include ROOM protocols, OOSE contracts, RDD contracts, M

OOSE UML Stereotype

attribute association

consists of association (aggregation)

communicates association communication

subscribes to association subscribes to

acquaintance association

extends generalization extends

inheritance generalization

uses generalization uses

depends on dependency
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 22

cor-

an

etup

lly im-
 states

ges
d. Even
terest,
e
ows

 of
e defines

n has
at the

ovides,
 oper-

achine

ole)
rface
 of sup-
rface
crosoft COM interfaces, and Helm, Holland & Gangopadhyay contracts. We have tried to in
porate the best of these ideas into a broadly-useful construct for describing interfaces.

An interface describes the legal patterns of interaction between two objects. There is a range of
possible interaction complexity: at the simplest, an interface consists of a set of functions that c
be called at any time in any order (a simple function library); a more complex interface is a set of
functions with constraints on the order in which they can be called (a function library with s
functions, for example). An interface has supplier and client roles, each of which corresponds to a
participant. (However, in many cases the client is uninteresting and only the supplier is rea
portant.). The legal interaction sequences can be specified by a state machine in which the
correspond to activities by the participants and the transition triggers correspond to messa
among the participants. (In the case of a simple class library the state machine can be omitte
in a more complicated case, frequently it is the participation in an interface that is of most in
rather than seeing the state machine.) An interface may be drawn as a class with stereotyp«in-
terface» (Figure 12). The name of the class is the name of the interface. Dependency arr
from participant classes to the interface class are labeled with stereotype «conforms» and with
the name of the role within the interface (such as “client” or “supplier”). Separate groupings
classes conforming to the interface may be shown on separate class icons; each appearanc
a set of classes that interact, i.e., an instantiation of the interface.

Normally we think of the interface as “belonging” to the supplier, but of course any interactio
two sides and most interfaces impose restrictions on what the clients can ask as well as wh
supplier must do. People often think of an interface as a set of operations that the supplier pr
but this is insufficient in many practical cases: there are constraints in the order in which the
ations can be called which means that the interface really requires a grammar or a state m
for its full specification.

We provide a stereotype icon for showing interfaces in a more compact form (Figure 13). The sup-
plier of an interface (i.e., the class, package, or entire system conforming to the “supplier” r
shows a protruding solid “lollipop” labeled by the name of the interface. The client of an inte
shows a dashed dependency arrow to the interface circle. This notation shows the matchup
pliers and clients. Either the client or the supplier may also be drawn in isolation with the inte
icon to show conformance to the interface.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 23

blems
s,

lves

) rela-

ther,

icat-

hitecture
3.4 Distribution

In the version 0.8 documentation set, we indicated that our future work would address the pro
of distribution and concurrency. In the UML, we have introduced a solution to these problem
largely by using existing UML features in creative way.

The problems of distribution and concurrency are not independent. Briefly, distribution invo
at least the following three issues:

• The allocation and possible migration of objects (including processes and threads
tive to nodes in the deployment view

• The grouping of distributed objects; objects are rarely distributed in isolation, but ra
tend to be distributed in groups

• The specification of mechanisms for registering, identifying, moving, and commun
ing with remote objects

Similarly, concurrency involves at least the following four issues:

• The presence of the processes and threads that compose the system’s process arc
• The allocation of classes and objects to these processes and threads
• The patterns of communication among these processes and threads

BarFoo

ZZZ

xyz
«interface»

«conforms»
client

«conforms»
supplier

abc
«interface»

«conforms»
client

«conforms»
supplier

Figure 12: Reified Interface Notation

Bar
Foo

xyz

abc

ZZZ

ZYW

xyz

tuv

Figure 13: Symbolic Interface Notation
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 24

 and

tem.

 the sec-

tion
ion
ally,
re dis-
 can be

blish-
s an
ple-

further

e, the
 object
erty.

 nodes.
signate
there,

 also

ime
dif-
oint we

 of dy-
 to the
ency re-
ably

ht be
 large
• The allocation and possible migration of these processes and threads to memories
processors in the deployment view

The problems of distribution and concurrency bridge the logical and physical views of a sys
To be clear, the essential modeling problems we are trying to solve include:

• How do I model the physical distribution and migration of objects in a system?
• How do I model the process architecture of a system?

This section addresses how the UML handles the first question, and section 3.5 addresses
ond.

Modeling the physical distribution and migration of objects in the UML requires the introduc
of one predefined property (location), plus the use of composite objects to denote distribut
units. The location property denotes the name of the node to which the item is attached. Fin
a distribution unit (a stereotyped object) designates a physical packaging of objects which a
tributed and may migrate as a unit across nodes. Since a distribution unit has a location and
identified, it is a composite object that contains other objects.

The interface stereotype is an important element of modeling distributed systems. In the pu
and-subscribe mechanisms of CORBA ORBS and Microsoft’s COM, one typically publishe
interface to which clients can subscribe and against which others implement, even if that im
mentation is distant from the intended clients. The semantics of interfaces were explained
in section Figure 3.3.

The location property allows one to model the physical partitioning of a system. To be precis
location of an object manifests itself as a dependency in the UML metamodel, between the
and a node (or nodes). From the user’s perspective, this dependency is rendered as a prop
Thus, in a class diagram, certain classes might be designated to “live” on a particular node or
For example, in a customer support system built upon a three-tier architecture, we might de
the class Customer to be attached to a server node, meaning that all of its instances reside
while the class Order Form might be attached to a client, with an association between Cus-
tomer and Order Form that essentially spans the two nodes. Instances of one class can
exist on multiple nodes (in which case the class must be visible on multiple nodes).

In a collaboration diagram, we can then model the migration of a Customer object from server
to server. In the UML, the same object may be represented at multiple points during its lifet
with distinct object icons connected by the «becomes» dependency. Each appearance shows
ferent values for its properties and attributes, such as the location property. Thus, at one p
might see aCustomer residing on firstServer and then at a later time residing on second-
Server .

The «becomes» dependency shows two stages in the life of a single object (Figure 14). This
diagram shows the migration of an object from one node to another as well as an example
namic classification in which an object changes its class. The dependency could be applied
associations as well but this seems unnecessary in most practical cases. A related depend
lationship is «copies» which indicates that one object is as a copy of another object, presum
for performance or reliability reasons. The semantics of copying require further work.

The location of an object can also be shown by physical nesting of the icons. An object mig
owned by a process that in turn is inside a node. This notation is intuitive but impractical for
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 25
x
location=ProcA

x
location=ProcB

«becomes» z
location=ProcA

theX

theX

y: Foo

y: Bar

«becomes»

theY

theY

Figure 14: Reified Distribution Notation in a Collaboration Diagram

«becomes»

x y

«cluster»

x y

«cluster»

z
ProcA

ProcB

Node1

Node2

Figure 15: Explicit Distribution Notation
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 26

ical

phical

e code
 as an
e node

lthough

e of the
 not

tion di-

t these

ter-
e,

g

s issue

from
numbers of objects, but might be useful for showing collaboration diagrams that cross phys
node boundaries (Figure 15).

Figure 14 shows the distribution notation to show objects that migrate from node to node. Figure
15 shows the migration of an object from one process to another on different nodes, using gra
containment to show the relative locations of nodes, processes, and objects. Figure 16 shows the
distribution notation to show static dependencies among code. The understanding is that th
is present on the given nodes (either as an ordinary procedure, as some variety of DLL, or
active object). Modules may also be marked to indicate whether the caller must be in the sam
or can be remote. Classes may be drawn inside the modules that they are defined within, a
a separate diagram may be necessary for large modules.

3.5 Real Time Semantics

In the version 0.8 documentation set, we introduced several elements that addressed som
problems of modeling time- and space-critical process architectures. These elements were
clearly identified as such in the 0.8 documentation set, and so we summarize them here:

• Timing marks may be attached as constraints to sequence diagrams and collabora
agrams in order to model timing (and space) budgets.

• Messages may have different kinds of synchronization semantics. We can represen
with stereotypes on the message; the three main kinds being call (send–wait, no process
synchronization, no existing activity in the callee, caller blocks until nested activity
minates and returns), asynchronous (send–no wait, the caller does not wait for the calle
which has existing activity), and rendezvous (send–wait, the caller waits for the existin
activity in the callee to reach a designated rendezvous state).

In 0.8, we underspecified the semantics of processes in threads. In the UML, we remedy thi
by introducing the following new features:

• Tasks are first class citizens. A task is the reification of a thread of control, distinct
the objects that it touches.

Node2

ModuleB

Node1

ModuleA xyz

abc X Y

ProcW

Figure 16: Distribution Notation with Modules
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 27

A
mple-
 task
 of con-

 exploit

 class
ontrol

 as just a
ms and
al icon

 other
ration,

 of con-

hods
has em-
s work
ll that a

s of its
al state
f the
.” Be-
ls to
prefer to
ink of
ration)
mplicit
s wait-
ctivity

ject ex-
s the
plete

he con-
to a
 as-
ntation
bels).
• A task is rooted in an active object (an object that maintains its own thread of control).
task may be implemented within a single process using a stack (the conventional i
mentation). However, we do not wish to preclude the distributed implementation of a
that crosses address spaces. The important thing is that a task is a sequential flow
trol.

• A model may show classes of tasks as well as instance of tasks, and as such may
all the existing UML semantics of classes and objects.

A task object is an object with its own memory and thread of control. In class models, a task
may designate a whole set of active objects. In object models, a task object reifies a flow of c
and as such sits at the head of a message trace. In class diagrams we render a task class
class, but with an appropriate stereotype. In interaction diagrams (including sequence diagra
collaboration diagrams) we render a task object as an object. In both cases, the stereotypic
is a rhombus tilted to the right. (The text stereotype can also be used but is less visual.)

3.6 Activity Diagrams

Sometimes it is useful to show the work involved in performing an operation by an object. In
words, we want to see the steps that occur in the execution of an implementation of an ope
including the sequential and concurrent sequencing of operations and branches in the flow
trol. This is the method for implementing an operation (roughly equivalent words include algo-
rithm and procedure). A method is attached to a particular class, so that several different met
might implement the same operation, depending on the class of the target object. Jim Odell
phasized the usefulness of displaying method implementation for program design as well a
flow analysis. The implementation of a method can be expressed as a state machine (reca
Turing machine and a computer program are state machines). An activity diagram is isomorphic
to a special kind of state machine that describes the implementation of an operation in term
suboperations (Figure 17). (Note that UML state machines are much extended from classic
machines.) A Harel state diagram can show the implementation of an operation, but most o
events in the execution of an operation are of the form “completion of the previous operation
cause the procedural implementation of operations is important, we provide special symbo
simplify the diagrams. These can be regarded as stereotypes of states; some people may
think of them as an altogether different kind of thing. In a general state machine one can th
two kinds of states: an “activity” state represents the execution of an activity (such as an ope
by an object and the state terminates automatically when the activity completes; there is an i
termination event that triggers the output transition. A “wait” state represents an object that i
ing for some external event to occur, beyond the control of the object owning the state. An a
represents a convenient shorthand for the first situation.

An activity diagram represents the state of the method execution, that is, the state of the ob
ecuting the method; the activities in the diagram represent activities of the object that perform
method. Its purpose is to understand the algorithm involved in performing a method. To com
an object-oriented design, the activities within the diagram must be assigned to objects and t
trol flows assigned to links in the object diagram. To show the assignment of an operation
class, the syntax ClassName::OperationName can be used for the operation name. When these
signments have been made, a collaboration diagram shows the full object-oriented impleme
of the method without drawing the individual operations (they are implicit in the message la
The state of execution of the method is implicit on a collaboration diagram.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 28

ring

lging
From the “outside,” an activity is a state of the method being described, a period of time du
which one of the steps is being performed. When expanded, an activity is the invocation of an op-
eration and its execution by the same object or another object. An activity is drawn as a “bu

Get
Cup

Put Coffee
in Filter Add Water

to Reservoir

[found coffee]

[no coffee]Find
Beverage

Make
Tea

[no tea]

[found tea]

Put Filter
in Machine Get

Water

Turn on
Machine

Person::Prepare Beverage

Figure 17: Activity Diagram

Brew coffee

light goes out

Pour Coffee

Drink

1..4

1..4

coffeePot.turnOn
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 29

ration.
es the
 within
e in a
 solid

 activ-
n the
 con-
rmin-
small
 multi-
rows,
ing of
sition
plicit
panded
 with

opies
n on

ay be
ber of
ly, a
ates
ividual
ultiple

pear
 there
as the
ght be
occurs
n ac-
n with

sition.

 by an
ontrol
ath is
vent;

l flow
l event.

an ac-
 state
licit
ween
box” shape with straight top and bottom and rounded ends, containing the name of the ope
When an activity symbol appears within an activity diagram or other state diagram, it indicat
execution of the operation. Executing a particular step within the diagram represents a state
the execution of the overall method. The same operation name may appear more than onc
state diagram, indicating the invocation of the same operation in different places. An outgoing
arrow attached to an activity symbol indicates a transition triggered by the completion of the
ity. The name of this implicit event need not be written, but guard conditions that depend o
result of the activity or other values may be included. Multiple transitions with different guard
ditions imply a branch of control; if the conditions are not disjoint then the branch is nondete
istic. A complex condition can be expressed as a “chain” of guard conditions by including a
round circle as a dummy intermediate node. Initiation of concurrent control is expressed by
ple arrows leaving a “synchronization bar” (a short heavy bar with incoming and outgoing ar
similar to a Petri net transition symbol; this is part of the base state diagram notation). Merg
concurrent control is expressed by multiple arrows entering a synchronization bar. If the tran
to the next operation does not occur immediately on completion of an operation, then an ex
event name can be placed on the transition. The execution of one of the activities can be ex
into its own method diagram. All of this notation follows from the basic state diagram notation
the provision for the implicit event on the termination of the activity.

Sometimes a number of copies of an operation are initiated concurrently. If the number of c
is determined at execution time, the individual occurrences of the operation cannot be show
the diagram, because there is an arbitrary number of them. Instead a multiplicity symbol m
placed on the output arrow from a synchronization symbol. The meaning is that some num
copies of the operation, consistent with the multiplicity value, execute concurrently. Similar
multiplicity symbol may be placed on the input arrow to a synchronization symbol; this indic
that the transition occurs when all of the operations have completed. The details of each ind
operation should be expanded as a separate diagram. In the example, “pour coffee” is a m
operation, which are all completed before the single operation “drink”.

Activity diagrams are used to show internal activity of an object, but external events may ap
in them. An external event appears when the object is in a “wait state—a state during which
is no internal activity by the object and the object is waiting for some external event to occur
result of an activity by another object (such as a user input or some other signal). There mi
more than one possible event that will take the object out of the wait state; the first one that
triggers the transition. A wait state is a “normal” state, as found in a Harel state machine. A
tivity state is just a special case of a normal state, representing the execution of an operatio
an implicit event on the termination of the operation execution that triggers the outgoing tran

It is possible to combine the two symbols to show an internal activity that can be interrupted
external event. The activity symbol is placed inside a state symbol. The normal procedural c
flow arrows are connected to and from the activity symbol; under normal circumstance this p
followed. An arrow from the enclosing state symbol is labeled with the name of an external e
if the external event occurs before the internal activity is completed, then the normal contro
is interrupted and the control passes to the target state of the transition labeled by the externa
Note that this notation follows directly from the rules of the Harel state machines. Note that
tivity symbol in a state diagram (including an activityan activity diagram) is a stereotype for a
with the internal activity “do: operationName” and outgoing transitions triggered by the imp
termination event of the operation. However, the activity symbol allows a clear distinction bet
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 30

ws a
ter-
odel.

od but
can be
al state
ent of
a-

hich
rm of

ds to
 the

epre-

er pre-
ard SDL
 ste-

yped
ity in-
 freely

-
rfaces
 we
d us to

t UML
more

ve we

tions.

ttern

an
s. Thus,
a “wait state” and an “internal activity” which is important to procedure design and also allo
clear visual distinction between the “normal” procedural flow of control and the “abnormal” in
rupt flow of control, although in reality both are modeled using the exact same underlying m

Sometimes it is desired to show operations whose execution is external to a particular meth
which are necessary to its completion (i.e., the invocation of an external operation). These
shown as normal wait states. The signal to the external object may be shown using the norm
machine “send” notation on a transition leading to a wait state, which is terminated by the ev
receiving a response from the other object. For example, in Figure 17 the activity “turn on m
chine” results in sending a “turn on” signal to the “coffee pot” object, followed by a state in w
the object waits for a response from the coffee pot. When the response is received in the fo
the light going out, the exit transition on the “brew coffee” state is triggered and the procee
the next internal step of the method. This is all normal state diagram notation. As defined in
state machine notation, the external object and the signals can be shown explicitly or just r
sented as part of the transition syntax, whichever is more convenient.

Now having incorporated this specialized form of state diagram we could also construct oth
sentations of state diagrams as stereotypes of the basic states. For example, the ITU stand
graph, which is very well known in the field of telecommunication, is an activity diagram with
reotypes for activity states.

To summarize, an activity diagram is not really a new kind of diagram. It is simply a stereot
state diagram in which all or most of the states are activity states, denoting procedural activ
ternal to the object owning the state diagram. However, activity states and wait states can be
mixed in any state diagram.

3.7 Patterns and Interactions

As described in section 3.3, an interface describes the external face of a class or a package, con
sisting of a set of operations and their signatures together with their dynamic semantics. Inte
express the externally-visible behavior of a single class. However, no class is an island, and so
needed to search for ways to model interactions across a collaboration of classes. This lea
investigate the modeling of patterns as described by Gamma, et al, in their seminal work, Design
Patterns. For example, the Gamma pattern Chain of Responsibility describes the collab-
oration between a Client object and a chain of Handler objects. This pattern effectively de-
scribes an interaction among several classes. We call these interaction patterns: the pattern
includes a class structure as well as a dynamic statement of the legal collaboration. Note tha
interfaces are insufficient for modeling this kind of collaboration, since the pattern involves
than a binary client/supplier relationship.

Patterns such as this are first class modeling elements. We call them “first class” because they are
in fact essential elements in the vocabulary of specifying a system’s architecture. We belie
have found a way to reify patterns in the UML without adding significant complexity. An interac-
tion is essentially a design of a use case. A pattern is a template for a set of similar interac

For example, in Figure 18, we see the pattern Chain of Responsibility expressed as an
interaction. We would draw such a diagram to state that we have imposed this particular pa
upon our architecture. If we zoom into the pattern, we would see the realization of the pattern as
an interaction among a set of collaborating objects. Zoom out, as we see in this figure, and we c
show how classes conform to this pattern, using roles to specify the role that each class play
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 31

at-

ut also

 a way

lar pat-

 many
t only
inally
s might
ay to
pture

impor-
these

 This is
ships
the classes KeyboardEventHandler , MIDIEventHandler , and GeneralEvent-
Handler conform to this pattern as Handlers . By conform, we mean that the concrete class s
isfies the semantics of the class that participates in the pattern.

This approach scales up to not only include generative patterns as found in Gamma’s book, b
to domain-specific interaction patterns which can be used within a particular domain, such as bank-
ing systems, as well as the ad-hoc design patterns found in every application. There are still some
technical problems to be worked out. Patterns in the Design Patterns book usually have important
instance-level regularities that do not always show up in the class diagram. We need to have
to show both the class structure and the varieties of instance structure implied by a particu
tern. In this example, each handler class has a successor of a specific other class, but the general
pattern permits successors to be of the same or a different class. The interesting aspect of
patterns is their dynamic behavior. We can certainly show this with interaction diagrams, bu
in the context of a specific model; it is harder to keep the “patternness” of the pattern open. F
patterns are templates, in a sense, in which classes, associations, attributes, and operation
all be mapped into different names which keeping the essence of the pattern; we need a w
clearly parameterize the patterns. Nevertheless we feel that we have enough facilities to ca
patterns within the UML by expressing them in terms of interactions.

4. Tentative Proposals

In this section we include some proposals that are not yet final. These proposals deal with
tant issues but still require further consideration. We ask for reader feedback to help settle
issues.

4.1 Traceability

The version 0.8 documentation set introduced the concept of the dependency relationship.
sufficient for capturing dependencies within a model but was not intended to capture relation

Chain of

Responsibility

MIDIEventHandler

GeneralEventHandler

KeyboardEventHandler

successor

successor

Handler

Handler

Handler

MusicApplication

Client

Figure 18: Conformance to a Pattern
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 32

poses

s in-

ific

imply

ht be

s in an

och
 of our
och,

hus far.

.

 re-

e for
/early
cting
ission,

l also
 will
ormal
cond

he
 UML
is level
 details
inary
between elements in two distinct versions of a model or two different models. For such pur
we need to capture the derivation of elements from other elements across models.

For this reason, we have added a general traceability relationship to the UML. Its semantic
clude:

• Every element may have a trace to one or more elements in other models.
• Not all such traces are interesting; different development styles will designate spec

traces as essential.
• A trace is purely structural; when we state that element A traces to element B, we s

mean that there is a connection between the two that may be followed.
• There is no graphical rendering of a trace defined by the UML.
• Tools may attach other semantics to traces; for example destroying element B mig

prohibited if there are any traces to it.

As a typical example, we might want to trace a requirement from a use case model to a clas
analysis model and then possibly to a whole collaboration in a design model.

5. What’s Next

5.1 Schedule

First, a little history. In October 1994, Grady and Jim joined forces to begin unifying the Bo
and OMT methods. In October 1995, we released the 0.8 documentation set as the first fruits
work. At the same time Ivar joined us, and we have been working since then to unify the Bo
OMT, and OOSE methods. This 0.91 document represents the results of that collaboration t

Next, our future schedule. After the release of the 0.91 document, our work will focus on these ma-
jor tasks:

• We will resolve the tentative proposals described in section 4.
• We will resolve the details of the other technical issues as described in section 5.2
• We will write additional collateral about the UML as described in section 5.3.
• We will complete a formal submission to the Object Management Group (OMG) in

sponse to their request for proposal.

It is this last task that is driving most of our work forward and creating for us a solid deadlin
completing all the loose ends. The OMG submission is currently due around the end of 1996
1997. We will likely designate that release of the UML documentation set as version 1.0, refle
the fact that this will be a major, stable, and complete release. Between now and that subm
we will incrementally be delivering some of the collateral as described in section 5.3 We wil
be presenting two tutorials on the UML at OOPSLA’96. The first tutorial (to be offered twice)
focus on the basic syntax and semantics of the UML. The second tutorial will focus on the f
semantics of the UML. This first tutorial will be presented by Grady, Jim, and Ivar, and the se
will be lead by Gunnar Overgaard, who is helping us develop the UML formal semantics.

Between now and the OMG submission, you will likely see courses and tools that support t
UML; we have even encountered some large projects that are starting to use the UML. The
is reasonably stable enough for this kind of early use, and we are in fact quite happy to see th
of support already. However, do realize that some details remain to be worked out, and these
won’t be completely resolved until version 1.0, therefore changes must be expected in prelim
implementations of the UML.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 33

ing pro-
cument.

 We
s), their

ating
standing
d the
 this is

 UML
f trace-

bility

h will
al

ying to
version

tion
uld oth-
It is our
then
 a bal-

ll the
onally
hat
 the de-
ts sent
. Prior
t after
 a great
5.2 Technical Issues

We have several technical issues to complete. For all of the technical issues, we have work
posals that we are considering but they were not yet ready for release as part of the 0.91 do
These technical issues include:

• The reification of tasks and operations
• The semantics of multiple models
• A number of low-level issues in the metamodel
• A formal specification of the UML semantics

In section 3.5, we discussed the fact that in the UML, tasks will become first class citizens.
understand the basic semantics of tasks, their common stereotypes (processes and thread
graphical notation, and their connection to other parts of the UML, namely, interaction diagrams
and the logical models of classes and objects. However, we have not yet completing integr
these concepts into our metamodel, and in the process we expect to come to a better under
of task semantics. Hopefully, will find ways to make them even simpler. We also understan
basic interaction between the semantics of tasks and the semantics of distribution, but since
relatively new ground we are proceeding carefully.

In section 4.1, we discussed the semantics of traceability. We introduced this concept in the
to begin to address the multi-model problem. While we do understand the basic semantics o
ability, we have further work to do to make this simpler, and to express what kind of tracea
relationships are most important.

We have a number of low-level issues in the metamodel left to resolve, virtually none of whic
affect the typical UML user; they are primarily important only to tool builders and to the form
specification. Since the 0.8 documentation set, we have been reworking the metamodel, tr
make it self-consistent, precise, and simple. We intend to release a complete metamodel in
1.0.

Creating a formal specification of the UML is hard work. We are pursuing a formal specifica
primarily because the very process of creating it forces us to uncover subtle issues that wo
erwise have been glossed over. We are being assisted in this work by Gunnar Overgaard.
intent to deliver a preliminary formal model of the UML along with the 1.0 submission, and
continue that work to get a reasonable formal coverage of the entire UML. We expect to use
ance of mathematical notation and precise English to write the specification.

With regard to the resolution of all public comments on the UML, we have in fact retained a
comments we have received thus far. While we could not response to each submitter pers
because of their sheer volume, will have and will continue to survey them to make certain t
we’ve not let any critical issues drop through the cracks. Ed Eykholt has helped us manage
tails of tracking the comments, and thus far, we have identified major trends in the commen
to us. These trends have in fact impacted how we prioritized our work for this 0.91 document
to the 1.0 submission, we will review all these comments plus the new ones we expect to ge
release of the 0.91 document. We very much value this feedback, and have already learned
deal about users want and like.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 34

e forth-
 or are

. A
ournal

De-

estions
 add

 User
. These
 After
f our

 who
 book

r books
prelim-
age in
, and

and con-
5.3 Other Collateral

In addition to the stream of documents consisting of the 0.8 release, this 0.91 release, and th
coming 1.0 release, there are a number of other pieces of collateral we have already written
preparing for the UML. This collateral includes:

• White papers published in various public journals
• Web documents concerning the UML
• A series of books on the UML

Grady, Jim, and Ivar have and will continue to publish technical papers describing the UML
number of these papers have already appeared in two SIGS journals, namely, JOOP (the J
of Object-Oriented Programming) and ROAD (the Report on Object-oriented Analysis and
sign).

Just prior to the release of this 0.91 document, we released a series of Frequently Asked Qu
(FAQ) about the UML on our web site (www.rational.com). Over the coming months, we will
to these FAQ as means of addressing other common UML issues.

We are currently working on several books about the UML, including a Reference Manual, a
Guide, and a book on process. Grady, Jim, and Ivar are coauthors on all three of these works
books will provide a complete and definitive statement of the semantics and use of the UML.
these books are substantially complete, we will likely turn our attention to updating some o
earlier works to the UML.

In addition to the collateral we are preparing, we are aware of a number of other individuals
have or will be writing books that either use or teach the use of the UML. There is already one
on Java that uses the UML, there are several public courses, and we know of several othe
that are being written that address different aspects of the UML, all based on our previous
inary publications. We hope for widespread tool support, training courses, and consultant us
the future. We strongly encourage this kind of support, and we will work with authors, trainers
consultants to ensure that their questions are addressed so that there will be wide-spread
sistent support for the UML.
Rational Software Corporation Friday, September 27, 1996 1:14 pm

Unified Modeling Language V0.91 Addendum 35
Rational Software Corporation Friday, September 27, 1996 1:14 pm

