Extensible Markup Language (XML)

What Is XML?

XML is a text-based markup language that is fast becoming the standard for data interchange on the Web. As with HTML, you identify data using tags (identifiers enclosed in angle brackets, like this: <...>). Collectively, the tags are known as "markup".

But unlike HTML, XML tags identify the data, rather than specifying how to display it. Where an HTML tag says something like "display this data in bold font" (...), an XML tag acts like a field name in your program. It puts a label on a piece of data that identifies it (for example: <message>...</message>).

Note: Since identifying the data gives you some sense of what means (how to interpret it, what you should do with it), XML is sometimes described as a mechanism for specifying the semantics (meaning) of the data.

In the same way that you define the field names for a data structure, you are free to use any XML tags that make sense for a given application. Naturally, though, for multiple applications to use the same XML data, they have to agree on the tag names they intend to use.

Here is an example of some XML data you might use for a messaging application:

<message>
 <to>you@yourAddress.com</to>
 <from>me@myAddress.com</from>
 <subject>XML Is Really Cool</subject>
 <text>
 How many ways is XML cool? Let me count the ways...

 </text>
</message>
The tags in this example identify the message as a whole, the destination and sender addresses, the subject, and the text of the message. As in HTML, the <to> tag has a matching end tag: </to>. The data between the tag and and its matching end tag defines an element of the XML data. Note, too, that the content of the <to> tag is entirely contained within the scope of the <message>..</message> tag. It is this ability for one tag to contain others that gives XML its ability to represent hierarchical data structures

Once again, as with HTML, whitespace is essentially irrelevant, so you can format the data for readability and yet still process it easily with a program. Unlike HTML, however, in XML you could easily search a data set for messages containing "cool" in the subject, because the XML tags identify the content of the data, rather than specifying its representation.
Relationship Between HTML, SGML, and XML

To understand what all the XML excitement is about, you need to understand the connection between HTML, SGML, and XML. XML is defined as an application profile, or restricted form, of SGML that is designed to support the efficient use of SGML documents over the Web. Informally, an application profile is a subset of a standard that has been given a little twist to accommodate real-world use. Understanding the twist that XML gives to SGML requires that you understand the strengths and weaknesses of SGML and its most famous application, HTML. However, the goal of XML is not to replace either technology, but to complement and augment them as appropriate.

The first question that needs to be addressed is why XML is even necessary when HTML is already available. Any technology that is used globally by millions and millions of people must be doing something right. As a general-purpose markup technology, HTML meets an extraordinarily broad set of user needs. However, it doesn’t fit very well with applications that rely upon specialized information, either as data files or as complex, structured documents. This is particularly true for applications such as automated data interchange, which requires data to be structured in a consistent manner. Imagine trying to format a complex mathematical formula in HTML. The only choices are to make an image out of the formula, embed a special math technology, or use another document-formatting technology such as Adobe’s Acrobat. As you have seen already, by itself, HTML can’t realistically accommodate the structuring and formatting needs of documents that require more than paragraphs, sections, and lists. HTML can’t deal with more complex, application-specific problems because its elements are fixed; the language contains no provision for extending itself; namely, it has no provision for defining new elements. Although browser vendors used to add new elements all the time, any proposed extension now entails lengthy advocacy before the W3C.

Regardless, adding more element types to HTML doesn’t make sense at this point. The language is already large enough. It is meant to be a general-purpose language that is capable of handling a large variety of documents. Thus, HTML needs some mechanism so that its general-purpose framework can be augmented to accommodate specialized content. SGML seems like a reasonable candidate to increase HTML’s flexibility. SGML is a meta-language, a language that is used to define other languages. Although HTML is the best-known SGML-defined language, SGML itself has been used successfully to define special document types ranging from aviation maintenance manuals to scholarly texts.
SGML can represent very complex information structures, and it scales well to accommodate enormous volumes of information. SGML is extremely complex, however, and wasn’t built with today’s online applications in mind. The language first appeared in the late 1970s, the golden age of batch processing, and wasn’t designed to be used in networked, interactive applications. Without resolving these issues, the full SGML language can’t be efficiently used over the Web.

Thus, XML is an attempt to define a subset of SGML that is specifically designed for use in a Web context. As such, it will be influenced by both its SGML parent and by HTML. The exact way that XML will fit into Web documents is still a topic of great debate, but the general role of the language is clear. Initially, it will be used to represent specialized data to augment HTML documents. In fact, it is already being used to do this. For example, Microsoft’s Channel Definition Format, which specifies documents for “push” delivery on the Internet, actually is an application of XML. (Push is a technology in which data, such as news, is sent to users on a scheduled basis, saving them the trouble of hunting for it on the Web.)

Purpose-specific extensions to Web documents will be the first use of XML, but at some point, XML will be used in its own right to design Web documents. Instead of using traditional SGML-defined HTML we will use a new form of HTML defined with XML called XHTML. Eventually we might even be using XML languages of our own definition directly within a Web browser.
Tags and Attributes

Tags can also contain attributes -- additional information included as part of the tag itself, within the tag's angle brackets. The following example shows an email message structure that uses attributes for the "to", "from", and "subject" fields:

<message to="you@yourAddress.com" from="me@myAddress.com"

 subject="XML Is Really Cool">
 <text>

 How many ways is XML cool? Let me count the ways...

 </text>

</message>

As in HTML, the attribute name is followed by an equal sign and the attribute value, and multiple attributes are separated by spaces. Unlike HTML, however, in XML commas between attributes are not ignored -- if present, they generate an error.

Since you could design a data structure like <message> equally well using either attributes or tags, it can take a considerable amount of thought to figure out which design is best for your purposes..

Empty Tags

One really big difference between XML and HTML is that an XML document is always constrained to be well formed. There are several rules that determine when a document is well-formed, but one of the most important is that every tag has a closing tag. So, in XML, the </to> tag is not optional. The <to> element is never terminated by any tag other than </to>.

Sometimes, though, it makes sense to have a tag that stands by itself. For example, you might want to add a "flag" tag that marks message as important. A tag like that doesn't enclose any content, so it's known as an "empty tag". You can create an empty tag by ending it with /> instead of >. For example, the following message contains such a tag:

<message to="you@yourAddress.com" from="me@myAddress.com"

 subject="XML Is Really Cool">

 <flag/>
 <text>

 How many ways is XML cool? Let me count the ways...

 </text>

</message>

Note: The empty tag saves you from having to code <flag></flag> in order to have a well-formed document. You can control which tags are allowed to be empty by creating a Document Type Definition, or DTD. We'll talk about that in a few moments. If there is no DTD, then the document can contain any kinds of tags you want, as long as the document is well-formed.

Comments in XML Files

XML comments look just like HTML comments:

<message to="you@yourAddress.com" from="me@myAddress.com"

 subject="XML Is Really Cool">

 <!-- This is a comment -->
 <text>

 How many ways is XML cool? Let me count the ways...

 </text>

</message>

The XML Prolog

To complete this journeyman's introduction to XML, note that an XML file always starts with a prolog. The minimal prolog contains a declaration that identifies the document as an XML document, like this:

<?xml version="1.0"?>

The declaration may also contain additional information, like this:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

The XML declaration is essentially the same as the HTML header, <html>, except that it uses <?..?> and it may contain the following attributes:

version

Identifies the version of the XML markup language used in the data. This attribute is not optional.

encoding

Identifies the character set used to encode the data. "ISO-8859-1" is "Latin-1" the Western European and English language character set. (The default is compressed Unicode: UTF-8.)

standalone

Tells whether or not this document references an external entity or an external data type specification (see below). If there are no external references, then "yes" is appropriate

The prolog can also contain definitions of entities (items that are inserted when you reference them from within the document) and specifications that tell which tags are valid in the document, both declared in a Document Type Definition (DTD) that can be defined directly within the prolog, as well as with pointers to external specification files

Note: The declaration is actually optional. But it's a good idea to include it whenever you create an XML file. The declaration should have the version number, at a minimum, and ideally the encoding as well. That standard simplifies things if the XML standard is extended in the future, and if the data ever needs to be localized for different geographical regions.

Everything that comes after the XML prolog constitutes the document's content.

Processing Instructions

An XML file can also contain processing instructions that give commands or information to an application that is processing the XML data. Processing instructions have the following format:

 <?target instructions?>

where the target is the name of the application that is expected to do the processing, and instructions is a string of characters that embodies the information or commands for the application to process.

Since the instructions are application specific, an XML file could have multiple processing instructions that tell different applications to do similar things, though in different ways. The XML file for a slideshow, for example, could have processing instructions that let the speaker specify a technical or executive-level version of the presentation. If multiple presentation programs were used, the program might need multiple versions of the processing instructions (although it would be nicer if such applications recognized standard instructions).

Note: The target name "xml" (in any combination of upper or lowercase letters) is reserved for XML standards. In one sense, the declaration is a processing instruction that fits that standard. (However, when you're working with the parser later, you'll see that the method for handling processing instructions never sees the declaration.)

Why Is XML Important?

There are a number of reasons for XML's surging acceptance. This section lists a few of the most prominent.

Plain Text

Since XML is not a binary format, you can create and edit files with anything from a standard text editor to a visual development environment. That makes it easy to debug your programs, and makes it useful for storing small amounts of data. At the other end of the spectrum, an XML front end to a database makes it possible to efficiently store large amounts of XML data as well. So XML provides scalability for anything from small configuration files to a company-wide data repository.

Data Identification

XML tells you what kind of data you have, not how to display it. Because the markup tags identify the information and break up the data into parts, an email program can process it, a search program can look for messages sent to particular people, and an address book can extract the address information from the rest of the message. In short, because the different parts of the information have been identified, they can be used in different ways by different applications.

Stylability

When display is important, the stylesheet standard, XSL, lets you dictate how to portray the data. For example, the stylesheet for:

<to>you@yourAddress.com</to>

can say:

1. Start a new line.

2. Display "To:" in bold, followed by a space

3. Display the destination data.

Which produces:

To: you@yourAddress

Of course, you could have done the same thing in HTML, but you wouldn't be able to process the data with search programs and address-extraction programs and the like. More importantly, since XML is inherently style-free, you can use a completely different stylesheet to produce output in postscript, TEX, PDF, or some new format that hasn't even been invented yet. That flexibility amounts to what one author described as "future-proofing" your information. The XML documents you author today can be used in future document-delivery systems that haven't even been imagined yet.

Inline Reusabiliy

One of the nicer aspects of XML documents is that they can be composed from separate entities. You can do that with HTML, but only by linking to other documents. Unlike HTML, XML entities can be included "in line" in a document. The included sections look like a normal part of the document -- you can search the whole document at one time or download it in one piece. That lets you modularize your documents without resorting to links. You can single-source a section so that an edit to it is reflected everywhere the section is used, and yet a document composed from such pieces looks for all the world like a one-piece document.

Linkability

Thanks to HTML, the ability to define links between documents is now regarded as a necessity. This initiative lets you define two-way links, multiple-target links, expanding" links (where clicking a link causes the targeted information to appear inline), and links between two existing documents that are defined in a third.

Easily Processed

As mentioned earlier, regular and consistent notation makes it easier to build a program to process XML data. For example, in HTML a <dt> tag can be delimited by </dt>, another <dt>, <dd>, or </dl>. That makes for some difficult programming. But in XML, the <dt> tag must always have a </dt> terminator, or else it will be defined as a <dt/> tag. That restriction is a critical part of the constraints that make an XML document well-formed. (Otherwise, the XML parser won't be able to read the data.) And since XML is a vendor-neutral standard, you can choose among several XML parsers, any one of which takes the work out of processing XML data.

Hierarchical

Finally, XML documents benefit from their hierarchical structure. Hierarchical document structures are, in general, faster to access because you can drill down to the part you need, like stepping through a table of contents. They are also easier to rearrange, because each piece is delimited. In a document, for example, you could move a heading to a new location and drag everything under it along with the heading, instead of having to page down to make a selection, cut, and then paste the selection into a new location.

How Can You Use XML?

There are several basic ways to make use of XML:

· Traditional data processing, where XML encodes the data for a program to process

· Document-driven programming, where XML documents are containers that build interfaces and applications from existing components

· Archiving -- the foundation for document-driven programming, where the customized version of a component is saved (archived) so it can be used later

· Binding, where the DTD or schema that defines an XML data structure is used to automatically generate a significant portion of the application that will eventually process that data

Traditional Data Processing

XML is fast becoming the data representation of choice for the Web. It's terrific when used in conjunction with network-centric Java-platform programs that send and retrieve information. So a client/server application, for example, could transmit XML-encoded data back and forth between the client and the server.

In the future, XML is potentially the answer for data interchange in all sorts of transactions, as long as both sides agree on the markup to use. (For example, should an email program expect to see tags named <FIRST> and <LAST>, or <FIRSTNAME> and <LASTNAME>?) The need for common standards will generate a lot of industry-specific standardization efforts in the years ahead. In the meantime, mechanisms that let you "translate" the tags in an XML document will be important. Such mechanisms include projects like the RDF initiative, which defines "meta tags", and the XSL specification, which lets you translate XML tags into other XML tags.

Document-Driven Programming (DDP)

The newest approach to using XML is to construct a document that describes how an application page should look. The document, rather than simply being displayed, consists of references to user interface components and business-logic components that are "hooked together" to create an application on the fly.

Of course, it makes sense to utilize the Java platform for such components. Both Java BeansTM for interfaces and Enterprise Java BeansTM for business logic can be used to construct such applications. Although none of the efforts undertaken so far are ready for commercial use, much preliminary work has already been done.

Note: The Java programming language is also excellent for writing XML-processing tools that are as portable as XML. Several Visual XML editors have been written for the Java platform. For a listing of editors, processing tools, and other XML resources.

Binding

Once you have defined the structure of XML data using either a DTD or the one of the schema standards, a large part of the processing you need to do has already been defined. For example, if the schema says that the text data in a <date> element must follow one of the recognized date formats, then one aspect of the validation criteria for the data has been defined -- it only remains to write the code. Although a DTD specification cannot go the same level of detail, a DTD (like a schema) provides a grammar that tells which data structures can occur, in what sequences. That specification tells you how to write the high-level code that processes the data elements.

But when the data structure (and possibly format) is fully specified, the code you need to process it can just as easily be generated automatically. That process is known as binding -- creating classes that recognize and process different data elements by processing the specification that defines those elements. As time goes on, you should find that you are using the data specification to generate significant chunks of code, so you can focus on the programming that is unique to your application.

Archiving

The Holy Grail of programming is the construction of reusable, modular components. Ideally, you'd like to take them off the shelf, customize them, and plug them together to construct an application, with a bare minimum of additional coding and additional compilation.

The basic mechanism for saving information is called archiving. You archive a component by writing it to an output stream in a form that you can reuse later. You can then read it in and instantiate it using its saved parameters. (For example, if you saved a table component, its parameters might be the number of rows and columns to display.) Archived components can also be shuffled around the Web and used in a variety of ways.

When components are archived in binary form, however, there are some limitations on the kinds of changes you can make to the underlying classes if you want to retain compatibility with previously saved versions. If you could modify the archived version to reflect the change, that would solve the problem. But that's hard to do with a binary object. Such considerations have prompted a number of investigations into using XML for archiving. But if an object's state were archived in text form using XML, then anything and everything in it could be changed as easily as you can say, "search and replace".

XML's text-based format could also make it easier to transfer objects between applications written in different languages. For all of these reasons, XML-based archiving is likely to become an important force in the not-too-distant future

Document Type Definition

The DTD specification is actually part of the XML specification, rather than a separate entity. On the other hand, it is optional -- you can write an XML document without it. And there are a number of schema proposals that offer more flexible alternatives. So it is treated here as though it were a separate specification.

A DTD specifies the kinds of tags that can be included in your XML document, and the valid arrangements of those tags. You can use the DTD to make sure you don't create an invalid XML structure. You can also use it to make sure that the XML structure you are reading (or that got sent over the net) is indeed valid.

Unfortunately, it is difficult to specify a DTD for a complex document in such a way that it prevents all invalid combinations and allows all the valid ones. So constructing a DTD is something of an art. The DTD can exist at the front of the document, as part of the prolog. It can also exist as a separate entity, or it can be split between the document prolog and one or more additional entities.

However, while the DTD mechanism was the first method defined for specifying valid document structure, it was not the last. Several newer schema specifications have been devised. You'll learn about those momentarily.
Appendix

Quick Reference:

Attributes: A qualifier on an XML tag that provides additional information. For example, in the tag <slide title="My Slide">, title is an attribute, and My Slide is its value.
Comment: Text in an XML document that is ignored, unless the parser is specifically told to recognize it. A comment is enclosed in a comment tag, like this: <!-- This is a comment -->

Content: The part of an XML document that occurs after the prolog, including the root element and everything it contains.

CDATA: A predefined XML tag for "Character DATA" that says "don't interpret these characters", as opposed to "Parsed Character Data" (PCDATA), in which the normal rules of XML syntax apply (for example, angle brackets demarcate XML tags, tags define XML elements, etc.). CDATA sections are typically used to show examples of XML syntax. Like this:

 <![CDATA[<slide>..A sample slide..</slide>]]>
which displays as:

 <slide>..A sample slide.. </slide>

Declaration: The very first thing in an XML document, which declares it as XML. The minimal declaration is <?xml version="1.0"?>. The declaration is part of the document prolog.

Document: In general, an XML structure in which one or more elements contains text intermixed with subelements.

DOM: Document Object Model. A tree of objects with interfaces for traversing the tree and writing an XML version of it, as defined by the W3C specification.

DTD: Document Type Definition. An optional part of the document prolog, as specified by the XML standard. The DTD specifies constraints on the valid tags and tag sequences that can be in the document. The DTD has a number of shortcomings however, which has led to various schema proposals. For example, the DTD entry <!ELEMENT username (#PCDATA)> says that the XML element called username contains "Parsed Character DATA" -- that is, text alone, with no other structural elements under it. The DTD includes both the local subset, defined in the current file, and the external subset, which consists of the definitions contained in external .dtd files that are referenced in the local subset using a parameter entity.

Element:A unit of XML data, delimited by tags. An XML element can enclose other elements. For example, in the XML structure,
"<slideshow><slide>..</slide><slide>..</slide></slideshow>",
 the <slideshow> element contains two <slide> elements.

Entity: A distinct, individual item that can be included in an XML document by referencing it. Such an entity reference can name an entity as small as a character (for example, "<", which references the less-than symbol, or left-angle bracket (<). An entity reference can also reference an entire document, or external entity, or a collection of DTD definitions (a parameter entity).

Entity reference: A reference to an entity that is substituted for the reference when the XML document is parsed. It may reference a predefined entity like < or it may reference one that is defined in the DTD. In the XML data, the reference could be to an entity that is defined in the local subset of the DTD or to an external XML file (an external entity). The DTD can also carve out a segment of DTD specifications and give it a name so that it can be reused (included) at multiple points in the DTD by defining a parameter entity.

External entity: An entity that exists as an external XML file, which is included in the XML document using an entity reference.

External subset: That part of the DTD that is defined by references to external .dtd files.

Fatal error: A fatal error occurs in the SAX parser when a document is not well formed, or otherwise cannot be processed.

General entity: An entity that is referenced as part of an XML document's content, as distinct from a parameter entity, which is referenced in the DTD. A general entity can be a parsed entity or an unparsed entity.

Namespace: A standard that lets you specify a unique label to the set of element names defined by a DTD. A document using that DTD can be included in any other document without having a conflict between element names. The elements defined in your DTD are then uniquely identified so that, for example, the parser can tell when an element called <name> should be interpreted according to your DTD, rather than using the definition for an element called "name" in a different DTD.

Normalization: The process of removing redundancy by modularizing, as with subroutines, and of removing superfluous differences by reducing them to a common denominator. For example, line endings from different systems are normalized by reducing them to a single NL, and multiple whitespace characters are normalized to one space.

Parsed entity: A general entity which contains XML, and which is therefore parsed when inserted into the XML document, as opposed to an unparsed entity.

Parser: A module that reads in XML data from an input source and breaks it up into chunks so that your program knows when it is working with a tag, an attribute, or element data. A nonvalidating parser ensures that the XML data is well formed, but does not verify that it is valid.

Processing instruction: Information contained in an XML structure that is intended to be interpreted by a specific application.

Prolog: The part of an XML document that precedes the XML data. The prolog includes the declaration and an optional DTD.
Tag: A piece of text that describes a unit of data, or element, in XML. The tag is distinguishable as markup, as opposed to data, because it is surrounded by angle brackets (< and >). For example, the element <name>My Name</name> has the start tag <name>, the end tag </name>, which enclose the data "My Name". To treat such markup syntax as data, you use an entity reference or a CDATA section.

Root: The outermost element in an XML document. The element that contains all other elements.

Well – formed: A well-formed XML document is syntactically correct. It does not have any angle brackets that are not part of tags. (The entity references < and > are used to embed angle brackets in an XML document.) In addition, all tags have an ending tag or are themselves self-ending (<slide>..</slide> or <slide/>). In addition, in a well-formed document, all tags are fully nested. They never overlap, so this arrangement would produce an error: <slide>. Knowing that a document is well formed makes it possible to process it. A well-formed document may not be valid however. To determine that, you need a validating parser and a DTD.

Valid: A valid XML document, in addition to being well formed, conforms to all the constraints imposed by a DTD. In other words, it does not contain any tags that are not permitted by the DTD, and the order of the tags conforms to the DTD's specifications.

Validating parser: A validating parser is a parser which ensures that an XML document is valid, as well as well-formed.
XSL: Extensible Stylesheet Language. An important standard that achieves several goals. XSL lets you:

a. Specify an addressing mechanism, so you can identify the parts of an XML file that a transformation applies to. (XPath)

b. Specify tag conversions, so you convert XML data into a different format. (XSLT)

c. Specify display characteristics, such page sizes, margins, and font heights and widths, as well as the flow objects on each page. Information fills in one area of a page and then automatically flows to the next object when that area fills up. That allows you to wrap text around pictures, for example, or to continue a newsletter article on a different page. (XML-FO)

