
Implementation of RMI
Aim
implement RMI system
Theoretical background
A primary goal for the RMI designers was to allow programmers to develop distributed Java programs
with the same syntax and semantics used for non-distributed programs. To do this, they had to carefully
map how Java classes and objects work in a single Java Virtual Machine1 (JVM) to a new model of
how classes and objects would work in a distributed (multiple JVM) computing environment.
The RMI architecture defines how objects behave, how and when exceptions can occur, how memory
is managed, and how parameters are passed to, and returned from, remote methods
Java RMI Architecture

The design goal for the RMI architecture was to create a Java distributed object model that
integrates naturally into the Java programming language and the local object model. RMI architects
have succeeded; creating a system that extends the safety and robustness of the Java architecture to the
distributed computing world.
Interfaces: The Heart of RMI

The RMI architecture is based on one important principle: the definition of behavior and
the implementation of that behavior are separate concepts. RMI allows the code that defines the
behavior and the code that implements the behavior to remain separate and to run on separate JVMs.
This fits nicely with the needs of a distributed system where clients are concerned about the definition
of a service and servers are focused on providing the service.
Specifically, in RMI, the definition of a remote service is coded using a Java interface. The
implementation of the remote service is coded in a class. Therefore, the key to understanding RMI is to
remember that interfaces define behavior and classes define implementation.
While the following diagram illustrates this separation,

remember that a Java interface does not contain executable code. RMI supports two classes that
implement the same interface. The first class is the implementation of the behavior, and it runs on the
server. The second class acts as a proxy for the remote service and it runs on the client. This is shown
in the following diagram.

A client program makes method calls on the proxy object, RMI sends the request to the

remote JVM, and forwards it to the implementation. Any return values provided by the implementation
are sent back to the proxy and then to the client's program.
RMI Architecture Layers

The RMI implementation is essentially built from three abstraction layers. The first is the
Stub and Skeleton layer, which lies just beneath the view of the developer. This layer intercepts method
calls made by the client to the interface reference variable and redirects these calls to a remote RMI
service.

The next layer is the Remote Reference Layer. This layer understands how to interpret and
manage references made from clients to the remote service objects. In JDK 1.1, this layer connects
clients to remote service objects that are running and exported on a server. The connection is a one-to-
one (unicast) link. In the Java 2 SDK, this layer was enhanced to support the activation of dormant
remote service objects via Remote Object Activation.
The transport layer is based on TCP/IP connections between machines in a network. It provides basic
connectivity, as well as some firewall penetration strategies.

By using a layered architecture each of the layers could be enhanced or replaced without
affecting the rest of the system. For example, the transport layer could be replaced by a UDP/IP layer
without affecting the upper layers.
Stub and Skeleton Layer

In RMI's use of the Proxy pattern, the stub class plays the role of the proxy, and the remote
service implementation class plays the role of the RealSubject.

A skeleton is a helper class that is generated for RMI to use. The skeleton understands how
to communicate with the stub across the RMI link. The skeleton carries on a conversation with the stub;
it reads the parameters for the method call from the link, makes the call to the remote service
implementation object, accepts the return value, and then writes the return value back to the stub.
In the Java 2 SDK implementation of RMI, the new wire protocol has made skeleton classes obsolete.
RMI uses reflection to make the connection to the remote service object. You only have to worry about
skeleton classes and objects in JDK 1.1 and JDK 1.1 compatible system implementations

Remote Reference Layer
The Remote Reference Layers defines and supports the invocation semantics of the RMI

connection. This layer provides a RemoteRef object that represents the link to the remote service
implementation object.

The JDK 1.1 implementation of RMI provides only one way for clients to connect to
remote service implementations: a unicast, point-to-point connection. Before a client can use a remote
service, the remote service must be instantiated on the server and exported to the RMI system. (If it is
the primary service, it must also be named and registered in the RMI Registry).

The Java 2 SDK implementation of RMI adds a new semantic for the client-server
connection. In this version, RMI supports activatable remote objects. When a method call is made to
the proxy for an activatable object, RMI determines if the remote service implementation object is
dormant. If it is dormant, RMI will instantiate the object and restore its state from a disk file. Once an
activatable object is in memory, it behaves just like JDK 1.1 remote service implementation objects.

Other types of connection semantics are possible. For example, with multicast, a single
proxy could send a method request to multiple implementations simultaneously and accept the first
reply (this improves response time and possibly improves availability). In the future, Sun may add
additional invocation semantics to RMI.
Transport Layer

The Transport Layer makes the connection between JVMs. All connections are stream-
based network connections that use TCP/IP. Even if two JVMs are running on the same physical
computer, they connect through their host computer's TCP/IP network protocol stack. (This is why you
must have an operational TCP/IP configuration on your computer to run the Exercises in this course).
The following diagram shows the unfettered use of TCP/IP connections between JVMs.

As you know, TCP/IP provides a persistent, stream-based connection between two
machines based on an IP address and port number at each end. Usually a DNS name is used instead of
an IP address; this means you could talk about a TCP/IP connection between
flicka.magelang.com:3452 and rosa.jguru.com:4432. In the current release of RMI,
TCP/IP connections are used as the foundation for all machine-to-machine connections.
On top of TCP/IP, RMI uses a wire level protocol called Java Remote Method Protocol (JRMP). JRMP
is a proprietary, stream-based protocol that is only partially specified is now in two versions. The first
version was released with the JDK 1.1 version of RMI and required the use of Skeleton classes on the
server. The second version was released with the Java 2 SDK. It has been optimized for performance
and does not require skeleton classes. (Note that some alternate implementations, such as BEA
Weblogic and NinjaRMI do not use JRMP, but instead use their own wire level protocol.
ObjectSpace's Voyager does recognize JRMP and will interoperate with RMI at the wire level.)
Some other changes with the Java 2 SDK are that RMI service interfaces are not required to extend
from java.rmi.Remote and their service methods do not necessarily throw RemoteException.
Sun and IBM have jointly worked on the next version of RMI, called RMI-IIOP, which will be
available with Java 2 SDK Version 1.3. The interesting thing about RMI-IIOP is that instead of using
JRMP, it will use the Object Management Group (OMG) Internet Inter-ORB Protocol, IIOP, to
communicate between clients and servers.

Naming remote Objects
During the presentation of the RMI Architecture, one question has been repeatedly postponed: "How
does a client find an RMI remote service? " Now you'll find the answer to that question. Clients find
remote services by using a naming or directory service. This may seem like circular logic. How can a
client locate a service by using a service? In fact, that is exactly the case. A naming or directory service
is run on a well-known host and port number.
(Well-known meaning everyone in an organization knowing what it is).

http://www.omg.org/
file:///products/jdk/1.2/index.html%2360

RMI can use many different directory services, including the Java Naming and Directory Interface
(JNDI). RMI itself includes a simple service called the RMI Registry, rmiregistry. The RMI
Registry runs on each machine that hosts remote service objects and accepts queries for services, by
default on port 1099.
On a host machine, a server program creates a remote service by first creating a local object that
implements that service. Next, it exports that object to RMI. When the object is exported, RMI creates
a listening service that waits for clients to connect and request the service. After exporting, the server
registers the object in the RMI Registry under a public name.
On the client side, the RMI Registry is accessed through the static class Naming. It provides the
method lookup() that a client uses to query a registry. The method lookup() accepts a URL that
specifies the server host name and the name of the desired service. The method returns a remote
reference to the service object. The URL takes the form:

rmi://<host_name>
 [:<name_service_port>]
 /<service_name>
where the host_name is a name recognized on the local area network (LAN) or a DNS name on the
Internet. The name_service_port only needs to be specified only if the naming service is running
on a different port to the default 1099
Using RMI
It is now time to build a working RMI system and get hands-on experience. In this section, you will
build a simple remote calculator service and use it from a client program.
A working RMI system is composed of several parts.

• Interface definitions for the remote services
• Implementations of the remote services
• Stub and Skeleton files
• A server to host the remote services
• An RMI Naming service that allows clients to find the remote services
• A class file provider (an HTTP or FTP server)
• A client program that needs the remote services

In the next sections, you will build a simple RMI system in a step-by-step fashion. You are encouraged
to create a fresh subdirectory on your computer and create these files as you read the text.
To simplify things, you will use a single directory for the client and server code. By running the client
and the server out of the same directory, you will not have to set up an HTTP or FTP server to provide
the class files. (Details about how to use HTTP and FTP servers as class file providers will be covered
in the section on Distributing and Installing RMI Software)
Assuming that the RMI system is already designed, you take the following steps to build a system:

1. Write and compile Java code for interfaces
2. Write and compile Java code for implementation classes
3. Generate Stub and Skeleton class files from the implementation classes
4. Write Java code for a remote service host program
5. Develop Java code for RMI client program
6. Install and run RMI system

file:///products/jdk/1.2/docs/api/java/rmi/Naming.html%23lookup(java.lang.String)
file:///products/jdk/1.2/docs/api/java/rmi/Naming.html

1. Interfaces
The first step is to write and compile the Java code for the service interface. The Calculator
interface defines all of the remote features offered by the service

public interface Calculator extends java.rmi.Remote {
 public long sub(long a, long b) throws java.rmi.RemoteException;

}
Notice this interface extends Remote, and each method signature declares that it may throw a
RemoteException object.
Copy this file to your directory and compile it with the Java compiler:
>javac Calculator.java
Next, you write the implementation for the remote service. This is the CalculatorImpl
class

public class CalculatorImpl extends java.rmi.server.UnicastRemoteObject
 implements Calculator {

 // Implementations must have an
 //explicit constructor
 // in order to declare the
 //RemoteException exception
 public CalculatorImpl() throws java.rmi.RemoteException {
 super();
 }
 public long sub(long a, long b) throws java.rmi.RemoteException {
 return a - b;
 }
 }

1. Again, copy this code into your directory and compile it.
The implementation class uses UnicastRemoteObject to link into the RMI system. In the
example the implementation class directly extends UnicastRemoteObject. This is not a
requirement. A class that does not extend UnicastRemoteObject may use its
exportObject() method to be linked into RMI.
When a class extends UnicastRemoteObject, it must provide a constructor that declares
that it may throw a RemoteException object. When this constructor calls super(), it
activates code in UnicastRemoteObject that performs the RMI linking and remote object
initialization.

Stubs and Skeletons
You next use the RMI compiler, rmic, to generate the stub and skeleton files. The compiler
runs on the remote service implementation class file.
>rmic CalculatorImpl
Try this in your directory. After you run rmic you should find the file
Calculator_Stub.class and, if you are running the Java 2 SDK,
Calculator_Skel.class.

file:///products/jdk/1.2/index.html

Host Server
Remote RMI services must be hosted in a server process. The class CalculatorServer is a
very simple server that provides the bare essentials for hosting

import java.rmi.Naming;

public class CalculatorServer {
 public CalculatorServer() {
 try { Calculator c = new CalculatorImpl();
 Naming.rebind("rmi://localhost:1099/CalculatorService", c);
 } catch (Exception e) {
 System.out.println("Trouble: " + e);
 }
 }
 public static void main(String args[]) {
 new CalculatorServer();

 }
}

Client
The source code for the client follows
import java.rmi.Naming;

import java.rmi.RemoteException;
import java.net.MalformedURLException;
import java.rmi.NotBoundException;

public class CalculatorClient {
 public static void main(String[] args) {
 try {
 Calculator c = (Calculator)Naming.lookup("rmi://localhost
 /CalculatorService");
 System.out.println(c.sub(4, 3));

 }
 catch (MalformedURLException murle) {
 System.out.println();
 System.out.println("MalformedURLException");
 }
 catch (RemoteException re) {
 System.out.println();
 System.out.println("RemoteException");
 }
 catch (NotBoundException nbe) {
 System.out.println();
 System.out.println("NotBoundException");
 }
 catch (java.lang.ArithmeticException ae) {
 System.out.println();
 System.out.println("java.lang.ArithmeticException");

 }
 }

}
Running the RMI System

You are now ready to run the system! You need to start three consoles, one for the server, one
for the client, and one for the RMIRegistry.
Start with the Registry. You must be in the directory that contains the classes you have written.
From there, enter the following:
rmiregistry
If all goes well, the registry will start running and you can switch to the next console.
In the second console start the server hosting the CalculatorService, and enter the
following:
>java CalculatorServer
It will start, load the implementation into memory and wait for a client connection.
In the last console, start the client program.
>java CalculatorClient
If all goes well you will see the following output:

1

That's it; you have created a working RMI system. Even though you ran the three consoles on the same
computer, RMI uses your network stack and TCP/IP to communicate between the three separate JVMs.
This is a full-fledged RMI system

	Implementation of RMI
	A primary goal for the RMI designers was to allow programmers to develop distributed Java programs with the same syntax and semantics used for non-distributed programs. To do this, they had to carefully map how Java classes and objects work in a single Java Virtual Machine1 (JVM) to a new model of how classes and objects would work in a distributed (multiple JVM) computing environment.

	Java RMI Architecture
	Interfaces: The Heart of RMI
	RMI Architecture Layers
	Stub and Skeleton Layer
	Remote Reference Layer
	Transport Layer

	Using RMI
	1.Interfaces
	Stubs and Skeletons
	Host Server
	Client
	Running the RMI System

